1.1python解决数学建模之席位分配问题
def rate_method(p,n):
lst =[] #保存各组席位数
sum_ =sum(p) #人数和
k =0#临时变量
for i in p:
lst.append(i/sum_*n)
k += int(i/sum_*n)
max_ =0
for i in lst:
max_ =i if (i -int(i)) > max_- int(max_)else max_ #小鼠的比较
lst[lst.index(max_)] =int(max_) +1
k +=1
for i in lst:
lst[lst.index(i)] =int(i)
print(lst)
#Q值法:
def q_value(p,n): #p:保存各组人数的列表,n:席位数
lst =[] #保存各组席位数
for i in p:
lst.append(1) #初始席位数都为1
lst_ =lst[:] #临时列表,保存各组Q值
for i in range(n-len(p)):
for i in range(len(p)):
lst_[i] =p[i]*p[i]/(lst[i]+1)/lst[i]
max_index=lst_.index(max(lst_))
lst[max_index] +=1
print(lst)
def d_Hondt(p,n): #p必须以大到小顺序排序
lst =[] #保存各组席位数
a,b=0,0 #保存比值,下一项比值
for i in p:
lst.append(0) #初始席位数都为0
for i in range(n):
for j in range(len(p)):
a =p[j]/(i+1)
if b>a:
break
b =p[j]/(i+2)
lst[j] += 1
if sum(lst) ==n: #放在第一个循环内,是考虑到不太可能只除了1就分配好了
break
print(lst)
p =[432,333,235] #从大到小比较好,为了一次性使用所有方法
n =10
rate_method(p,n)
q_value(p,n)
d_Hondt(p,n)
二:席位分配常用的三种方法:
1.比例分配 :公平而又简单
2.Q值法:(摘自:数学模型-姜启源-)
设两方人数分别 p1 和 p2 ,占有席位分别是 n1 和 n2 ,则两方每个席位代表的人数分别为 p1/n1 和 p2/n2 .显然仅当 p1/n1 = p2/n2 时席位的分配才是公平的.但是因为人数和席 位都是整数,所以通常 p1/n1 ≠ p2/n2 ,这时席位分配不公平,并且 pi ni (i= 1, 2)数值较大的一方吃亏,或者说对这一方不公平.
不妨假设 p1/n1 > p2/n2 ,不公平程度可用数值 p1/n1 - p2/n2 衡量.如设 p1 = 120, p2 = 100, n1 = n2 = 10,则 p1/n1 - p2/n2 = 12 - 10 = 2,它衡量的是不 公平的绝对程度,常常无法区分两种程度明显不同的不公平情况.例如上述双方 人数增加为 p1 = 1 020 和 p2 = 1 000,而席位 n1 , n2 不变时, p1/n1 - p2/n2 = 102 - 100 = 2,即绝对不公平程度不变.但是常识告诉我们,后面这种情况的不公 平程度比起前面来已经大为改善了.
为了改进上述绝对标准,自然想到用相对标准.仍记 p1 , p2 为 A, B 两方的 固定人数, n1 , n2 为两方分配的席位(可变),若 p1/n1 > p2/n2 ,则定义
rA ( n1 , n2 ) =(p1 /n1 - p2 /n2)/( p2 /n2) (1) 为对 A 的相对不公平度.
若 p2 n2 > p1 n1 ,则定义
rB ( n1 , n2 ) =(p2 /n2 - p1/ n1 )/(p1 n1) (2) 为对 B 的相对不公平度
建立了衡量分配不公平程度的数量指标 rA ,rB 后,制定席位分配方案的原 则是使它们尽可能小. 确定分配方案 假设 A, B 两方已分别占有 n1 和 n2 席,利用相对不公平 度 rA 和 rB 讨论,当总席位增加 1 席时,应该分配给 A 还是 B. 不失一般性可设 p1 /n1 > p2 /n2 ,即对 A 不公平.当再分配 1 个席位时,关 于 pi ni (i= 1,2)的不等式可能有以下 3 种情况: 1 . p1/ ( n1 + 1) > p2 /n2 ,这说明即使 A 方增加 1 席,仍然对 A 不公平,所以 这一席显然应分给 A 方. 2 . p1 /(n1 + 1) < p2 /n2 ,说明当 A 方增加 1 席时将变为对 B 不公平,参照 (2)式可计算出对 B 的相对不公平度为 rB ( n1 + 1, n2 ) =p2 /(n1 + 1) /(p1 /n2)- 1 (3)3 . p1 /n1 > p2/ ( n2 + 1),即当 B 方增加 1 席时将对 A 不公平,参照(1)式可 计算出对 A 的相对不公平度为
rA ( n1 , n2 + 1) =p1 (/ n2 + 1) (p2/ n1) - 1 (4)
(不可能出现 p1 /n1 < p2 /( n2 + 1)的情况.为什么 ?) 因为公平分配席位的原则是使得相对不公平度尽可能地小,所以如果 rB ( n1 + 1, n2 ) < rA ( n1 , n2 + 1) (5) 则这 1 席应分给 A 方;反之则分给 B 方.根据(3),(4)两式,(5)式等价于 (p2 ^2) /(n2 (n2 + 1) )< (p1^2 )/ n1 ( n1 + 1) (6) 还不难证明,上述第 1 种情况的 p1 /( n1 + 1) > p2 /n2 也会导致(6)式.于是我们 的结论是:当(6)式成立时增加的 1 席应分给 A 方,反之则分给 B 方.或者,若记 Qi =( p i^2)/ (ni( ni + 1)),i= 1,2,则增加的 1 席应分给 Q 值较大的一方. 上述方法可以推广到有 m 方分配席位的情况.设第 i 方人数为 pi,已占有 ni 个席位,i= 1,2,⋯, m.当总席位增加 1 席时,计算
Qi =(pi^2)/(ni( ni + 1)), i= 1,2,⋯, m (7)
应将这一席分给 Q 值最大的一方.这种席位分配方法称 Q 值法.
3.d’ Hondt 方法:
将各组人数用正整数 n = 1, 2, 3,⋯相除,将所得商数从大到小取前 n个(n 为席位数)
1.1python解决数学建模之席位分配问题的更多相关文章
- Python数学建模-01.新手必读
Python 完全可以满足数学建模的需要. Python 是数学建模的最佳选择之一,而且在其它工作中也无所不能. 『Python 数学建模 @ Youcans』带你从数模小白成为国赛达人. 1. 数学 ...
- 席位分配问题——惯例Q值法和d'hondt法的MATLAB程序
本篇博文为追忆以前写过的算法系列第四篇 温故知新 本篇于2009年发表于百度博客,当时还没接触CSDN.所以是文学和技术博客混淆,只是这个程序博文訪问量突破2000,有不少网友评论互动.应该 ...
- 余胜威《MATLAB数学建模经典案例实战》2015年版
内容介绍 本书全面.系统地讲解了数学建模的知识.书中结合历年全国大学生数学建模竞赛试题,采用案例与算法程序相结合的方法,循序渐进,逐步引导读者深入挖掘实际问题背后的数学问题及求解方法.在本书案例的分析 ...
- Python小白的数学建模课-A1.2021年数维杯C题(运动会优化比赛模式探索)探讨
Python小白的数学建模课 A1-2021年数维杯C题(运动会优化比赛模式探索)探讨. 运动会优化比赛模式问题,是公平分配问题 『Python小白的数学建模课 @ Youcans』带你从数模小白成为 ...
- 在数学建模中学MATLAB
为期三周的数学建模国赛培训昨天正式结束了,还是有一定的收获的,尤其是在MATLAB的使用上. 1. 一些MATLAB的基础性东西: 元胞数组的使用:http://blog.csdn.net/z1137 ...
- BITED数学建模七日谈之六:组队建议和比赛流程建议
今天进入数学建模经验谈第六天:组队建议和比赛流程建议 数学模型的组队非常重要,三个人的团队一定要有分工明确而且互有合作,三个人都有其各自的特长,这样在某方面的问题的处理上才会保持高效率. 三个人的分工 ...
- BITED数学建模七日谈之五:怎样问数学模型问题
下面进入数学建模经验谈第五天:怎样问数学模型问题 写这一篇的目的主要在于帮助大家能更快地发现问题和解决问题,让自己的模型思路有一个比较好的形成过程. 在我们学习数学模型.准备比赛的时候,经常会遇到各种 ...
- BITED数学建模七日谈之四:数学模型分类浅谈
本文进入到数学建模七日谈第四天:数学模型分类浅谈 大家常常问道,数学模型到底有哪些,分别该怎么学习,这样能让我们的学习有的放矢,而不至于没了方向.我想告诉大家,现实生活中的问题有哪些类,数学模型就有哪 ...
- BITED数学建模七日谈之三:怎样进行论文阅读
前两天,我和大家谈了如何阅读教材和备战数模比赛应该积累的内容,本文进入到数学建模七日谈第三天:怎样进行论文阅读. 大家也许看过大量的数学模型的书籍,学过很多相关的课程,但是若没有真刀真枪地看过论文,进 ...
随机推荐
- 从CSS到houdini
0. 前言 平时写CSS,感觉有很多多余的代码或者不好实现的方法,于是有了预处理器的解决方案,主旨是write less &do more.其实原生css中,用上css变量也不差,加上bem命 ...
- Jmeter接口测试+压力测试
链接推荐:https://blog.csdn.net/github_27109687/article/details/71968662
- 18.python关于mysql的api
一.pymysql模块1.pymysql是Python中操作MySQL的模块2.执行sql语句(1)连接数据库: import pymysql #连接mysql数据库创建conn对象(host连接的机 ...
- 使用getInstance()方法的原因及作用
使用getInstance()方法的原因及作用 先举例说明: 下面是一个例子,为什么要把这个类实例化?有什么好处? //实例化 public static DBConnect instance; pu ...
- 连接管理 与 Netty 心跳机制
一.前言 踏踏实实,动手去做,talk is cheap, show me the code.先介绍下基础知识,然后做个心跳机制的Demo. 二.连接 长连接:在整个通讯过程,客户端和服务端只用一个S ...
- 15. Password auditing (密码审核 12个)
Aircrack是一套用于802.11a / b / g WEP和WPA破解的工具. 一旦收集到足够的加密数据包,它就会实现最有效的破解算法来恢复无线密钥.. 该套件包括十多个分离工具,包括airod ...
- 浅谈C#语言中的各种数据类型,与数据类型之间的转换
什么是数据类型? 数据类型,百度百科是这样解释的:数据类型在数据结构中的定义是一个值的集合以及定义在这个值集上的一组操作.这样的解释对于一个初学者来说未必太过于深奥. 简单点说,数据类型就是不同长度的 ...
- 1.1.27 word表格里的文字不显示
1.问题: 下载其他人做的表格后,在表格内打字,字不显示. 2.解决方案: 产生这种问题的原因是,该表格设置的字体,你的电脑未安装. a.将隐藏文字选中,设为[宋体]或其他已经安装字体. b.下载[方 ...
- Python学习基本小练习
对于python的10个小练习做下笔记 1.使用while循环输入1 2 3 4 5 6 8 9 10...自己写的代码如下: num1 = 0 while num1 < 10: num1 = ...
- 通用唯一识别码UUID
UUID 概念:UUID 是 通用唯一识别码(Universally Unique Identifier)的缩写,目前最广泛应用的UUID,是微软公司的全局唯一标识符(GUID),而其他重要的应用,则 ...