一、简介

 此项目来自kaggle:https://www.kaggle.com/c/event-recommendation-engine-challenge/

 数据集的下载需要账号,并且需要手机验证(之前如果kaggle账号已经验证过,就不需要验证了),验证的时候手机号前面需要加上860:

 这里我已经将数据下载,并上传到百度云盘,链接:https://pan.baidu.com/s/1KDZN313XkbhkRDZX4dLYNA 提取码:ino3

 背景介绍

  根据user actions, event metadata, and demographic information(社交信息)预测用户对哪个event感兴趣

 桌面新建文件夹:推荐比赛->进入推荐比赛文件夹->shift + 右键->在此处新建命令窗口->jupyter notebook->新建recommend脚本,将上面下载的数据解压到推荐比赛文件夹

 1)第一步:统计user和event相关信息

  我们先看看train.csv:

import pandas as pd
df_train = pd.read_csv('train.csv')
df_train.head()

  结果如下:前两列是用户ID和对应的event ID

  而test.csv中用户缺少了标签:

  让我们来看看第一步的完整代码:

from collections import defaultdict
import scipy.sparse as ss
import scipy.io as sio
import itertools
#import cPickle
#From python3, cPickle has beed replaced by _pickle
import _pickle as cPickle class ProgramEntities:
"""
我们只关心train和test中出现的user和event,因此重点处理这部分关联数据,
经过统计:train和test中总共3391个users和13418个events
"""
def __init__(self):
#统计训练集中有多少独立的用户的events
uniqueUsers = set()#uniqueUsers保存总共多少个用户:3391个
uniqueEvents = set()#uniqueEvents保存总共多少个events:13418个
eventsForUser = defaultdict(set)#字典eventsForUser保存了每个user:所对应的event
usersForEvent = defaultdict(set)#字典usersForEvent保存了每个event:哪些user点击
for filename in ['train.csv', 'test.csv']:
f = open(filename)
f.readline()#跳过第一行
for line in f:
cols = line.strip().split(',')
uniqueUsers.add( cols[0] )
uniqueEvents.add( cols[1] )
eventsForUser[cols[0]].add( cols[1] )
usersForEvent[cols[1]].add( cols[0] )
f.close() self.userEventScores = ss.dok_matrix( ( len(uniqueUsers), len(uniqueEvents) ) )
self.userIndex = dict()
self.eventIndex = dict()
for i, u in enumerate(uniqueUsers):
self.userIndex[u] = i
for i, e in enumerate(uniqueEvents):
self.eventIndex[e] = i ftrain = open('train.csv')
ftrain.readline()
for line in ftrain:
cols = line.strip().split(',')
i = self.userIndex[ cols[0] ]
j = self.eventIndex[ cols[1] ]
self.userEventScores[i, j] = int( cols[4] ) - int( cols[5] )
ftrain.close()
sio.mmwrite('PE_userEventScores', self.userEventScores) #为了防止不必要的计算,我们找出来所有关联的用户或者关联的event
#所谓关联用户指的是至少在同一个event上有行为的用户user pair
#关联的event指的是至少同一个user有行为的event pair
self.uniqueUserPairs = set()
self.uniqueEventPairs = set()
for event in uniqueEvents:
users = usersForEvent[event]
if len(users) > 2:
self.uniqueUserPairs.update( itertools.combinations(users, 2) )
for user in uniqueUsers:
events = eventsForUser[user]
if len(events) > 2:
self.uniqueEventPairs.update( itertools.combinations(events, 2) )
#rint(self.userIndex)
cPickle.dump( self.userIndex, open('PE_userIndex.pkl', 'wb'))
cPickle.dump( self.eventIndex, open('PE_eventIndex.pkl', 'wb') ) print('第1步:统计user和event相关信息...')
pe = ProgramEntities()
print('第1步完成...\n')

  其中PE_userEventScores.mtx是所有users和events的矩阵,但是里面的值只有train.csv的值,值是1或者-1

  scipy.sparse.dok_matrix()函数是产生一个稀疏矩阵,这样PE_userEventScores.mtx只保存了非0值

  针对该步使用的变量作简单介绍:

   uniqueUsers:集合,保存train.csvtest.csv中的所有user ID

   uniqueEvents:集合,保存train.csvtest.csv中的所有event ID

   eventsForUser:字典,key为每个用户,value为该用户对应的event集合

   usersForEvent:字典,key为每个event,value为该event对应的user集合

   userIndex:字典,每个用户有个Index

   eventIndex:字典,每个event有个Index

   userEventScores:稀疏矩阵3391 * 13418,use vs event,矩阵元素为train.csv中每个user对某个event的兴趣分(1, 0 or -1)即interested - not_interested

import pandas as pd
pd.DataFrame(userEventScores)

   代码示例结果:

userEventScores:每个user对每个event的兴趣分(1, 0 or -1

   uniqueUserPairs:集合,如果对于同一个event来说,关联上3个及3个以上users,则该event关联上的users进行两两配对,保存在uniqueUserPairs中,注意保存的是userId,而不是user对应的索引:

import pandas as pd
df_train = pd.read_csv('train.csv')
df_train[df_train['event']==1502284248] import itertools
for each in itertools.combinations(set([3044012,1302145719,3194014105,3669515588]), 2):
print(each)

   代码结果示例:

   uniqueEventPairs:集合,对于同一个用户,如果其关联的events大于等于3,则这些关联的events保存在uniqueEventPairs中,注意保存的是event id,而不是event对应的索引:

import pandas as pd
df_train = pd.read_csv('train.csv')
df_train[df_train['user']==3044012] import itertools
for each in itertools.combinations(set([1918771225,1502284248,2529072432, 3072478280, 1390707377, 1532377761 ]), 2):
print(each)

   代码结果示例:

   cPickle模块(python3为pickle或者_pickle模块):请参考pickle详解

 至此,第一步完成,哪里有不明白的请留言

 我们继续看Event Recommendation Engine Challenge分步解析第二步

Event Recommendation Engine Challenge分步解析第一步的更多相关文章

  1. Event Recommendation Engine Challenge分步解析第七步

    一.请知晓 本文是基于: Event Recommendation Engine Challenge分步解析第一步 Event Recommendation Engine Challenge分步解析第 ...

  2. Event Recommendation Engine Challenge分步解析第六步

    一.请知晓 本文是基于: Event Recommendation Engine Challenge分步解析第一步 Event Recommendation Engine Challenge分步解析第 ...

  3. Event Recommendation Engine Challenge分步解析第五步

    一.请知晓 本文是基于: Event Recommendation Engine Challenge分步解析第一步 Event Recommendation Engine Challenge分步解析第 ...

  4. Event Recommendation Engine Challenge分步解析第四步

    一.请知晓 本文是基于: Event Recommendation Engine Challenge分步解析第一步 Event Recommendation Engine Challenge分步解析第 ...

  5. Event Recommendation Engine Challenge分步解析第三步

    一.请知晓 本文是基于: Event Recommendation Engine Challenge分步解析第一步 Event Recommendation Engine Challenge分步解析第 ...

  6. Event Recommendation Engine Challenge分步解析第二步

    一.请知晓 本文是基于Event Recommendation Engine Challenge分步解析第一步,需要读者先阅读上篇文章解析 二.用户相似度计算 第二步:计算用户相似度信息 由于用到:u ...

  7. Comprehensive Guide to build a Recommendation Engine from scratch (in Python) / 从0开始搭建推荐系统

    https://www.analyticsvidhya.com/blog/2018/06/comprehensive-guide-recommendation-engine-python/, 一篇详细 ...

  8. UE4蓝图编程的第一步

    认识UE4蓝图中颜色与变量类型: UE4中各个颜色对应着不同的变量,连接点和连线的颜色都在表示此处是什么类型的变量.对于初学者来说一开始看到那么多连接点, 可能会很茫然,搞不清还怎么连,如果知道了颜色 ...

  9. 重制AdvanceWars第一步 -- 搞定地图

    首先来聊下高级战争吧Advance Wars,由任天堂旗下的Intelligent Systems开发的战棋游戏.初作诞生于GBA上,后来继续跟进了高战2黑洞崛,而后在下一代掌机DS上也出了三代续作高 ...

随机推荐

  1. Ubuntu下安装tomcat

    下面记录了Ubuntu 16.04下安装Tomcat 8.5.9的过程步骤. 1.到官网下载tomcat8.5.9,选择格式为tar.gz.2.通过ftp将下载的tomcat8.5.9压缩包上传到ub ...

  2. ElasticSearch查询 第四篇:匹配查询(Match)

    <ElasticSearch查询>目录导航: ElasticSearch查询 第一篇:搜索API ElasticSearch查询 第二篇:文档更新 ElasticSearch查询 第三篇: ...

  3. Civil 3d设置横断面图样式

    一位网友提出这样一个问题: 在使用SectionView.StyleName属性时, 会抛出异常:need to override property StyleName. 我测试的结果一样, 同时测试 ...

  4. nodejs eggjs框架 爬虫 readhub.me

    最近做了一款 高仿ReadHub小程序  微信小程序 canvas 自动适配 自动换行,保存图片分享到朋友圈  https://gitee.com/richard1015/News 具体代码已被开源, ...

  5. Go语言函数相关

    1.函数的声明定义 //func关键字 //getStudent函数名 //(id int, classId int) 参数列表 //(name string,age int) 返回值列表 func ...

  6. linux-shell系列1-ip

    #!/bin/sh # Ping网段所有IP ip1=192.168.30.ip2=192.168.31.ip3=192.168.232.for i in `seq 1 255`do ping -c ...

  7. Java json转model

    前面有一篇关于  json的转换类的工具:http://blog.csdn.net/hanjun0612/article/details/77891569 但是有一个情况. 由于java需要属性小写开 ...

  8. PIGS POJ - 1149(水最大流)

    题意: 有M个猪圈,每个猪圈里初始时有若干头猪.一开始所有猪圈都是关闭的.依次来了N个顾客,每个顾客分别会打开指定的几个猪圈,从中买若干头猪.每个顾客分别都有他能够买的数量的上限.每个顾客走后,他打开 ...

  9. MT【254】值域包含值域

    已知函数$f(x)=x-\dfrac{1}{1+x},g(x)=x^2-2ax+4,$若对任意$x_1\in[0,1]$,存在$x_2\in[1,2]$,使得$f(x_1)=g(x_2)$,则实数$a ...

  10. HGOI 20190310 题解

    /* 又是又双叒叕WA的一天... 我太弱鸡了... 今天上午打了4道CF */ Problem 1 meaning 给出q组询问,求下列函数的值$ f(a) = \max\limits_{0 < ...