Modular Arithmetic ( Arithmetic and Algebra) CGAL 4.13 -User Manual
1 Introduction
Modular arithmetic is a fundamental tool in modern algebra systems. In conjunction with the Chinese remainder theorem it serves as the workhorse in several algorithms computing the gcd, resultant etc. Moreover, it can serve as a very efficient filter, since it is often possible to exclude that some value is zero by computing its modular correspondent with respect to one prime only.
模运算是现代代数系统的基本工具。与中国余数定理(Chinese remainder theorem)结合,是若干计算GCD和合矢量(resultant )算法的核心。另外,它能够作为一个十分高效的工具,原因在于它常常可能排除计算一个素数( since it is often possible to exclude that some value is zero by computing its modular correspondent with respect to one prime only.)
2 Residue and Modularizable
First of all, this package introduces a type Residue
. It represents Z/pZ for some prime p. The prime number p is stored in a static member variable. The class provides static member functions to change this value.
Changing the prime invalidates already existing objects of this type. However, already existing objects do not lose their value with respect to the old prime and can be reused after restoring the old prime. Since the type is based on double arithmetic the prime is restricted to values less than 226. The initial value of p is 67108859.
Moreover, the package introduces the concept Modularizable
. An algebraic structure T
is considered as Modularizable
if there is a mapping from T
into an algebraic structure that is based on the type Residue
. For scalar types, e.g. Integers, this mapping is just the canonical homomorphism into Z/pZ represented by Residue
. For compound types, e.g. Polynomials, the mapping is applied to the coefficients of the compound type. The mapping is provided by the class Modular_traits<T>
. The class Modular_traits<T>
is designed such that the concept Modularizable
can be considered as optional, i.e., Modular_traits<T>
provides a tag that can be used for dispatching.
首先,本包引入了Residue类型。它表示某素数p的乘法群(Z/pZ );素数(prime)p是保存在一个静态成员变量。一个类提供的静态函数用来改变这个值。(数学上,同余(英语:congruence modulo,符号:≡)是数论中的一种等价关系。当两个整数除以同一个正整数,若得相同余数,则二整数同余。同余是抽象代数中的同余关系的原型。在同余理论中,模 n 的互质同余类组成一个乘法群,称为整数模 n 乘法群,也称为模 n 既约剩余类。在环理论中,一个抽象代数的分支,也称这个群为整数模 n 的环的单位群(单位是指乘法可逆元)。这个群是数论的基石,在密码学、整数分解和素性测试均有运用。例如,关于这个群的阶(即群的“大小”),我们可以确定如果 n 是质数当且仅当阶数为 n-1。)
改变素数的值使现存的这个类的对象非法。但现存的对象不会丢失该值,通过恢复旧的素数就可以重用。因该类型基于双精度算术运算,素数被限制在小于226,初始p的值是67108859。
另外,本包引入了“可余的”或可模的 Modularizable
概念。如果一个代数结构T与一个基于Residue的结构存在一个映射(mapping ),则T被认为是Modularizable。对于标量,即整数,映射仅仅是Z/pZ(乘法群)中Residue表示的典型同态(canonical homomorphism);对于复合类型,即多项式,映射运用于复合类型的系数。映射由类 Modular_traits<T>提供。类 Modular_traits<T>的设计可以将概念Modularizable
作为可选的,即 Modular_traits<T>
提供了一个标签用于调度。
2.1 Example
In the following example modular arithmetic is used as a filter on order to avoid unnecessary gcd computations of polynomials. A gcd
computation can be very costly due to coefficient growth within the Euclidean algorithm.
The general idea is that firstly the gcd is computed with respect to one prime only. If this modular gcd is constant we can (in most cases) conclude that the actual gcd is constant as well.
For this purpose the example introduces the function may_have_common_factor()
. Note that there are two versions of this function, namely for the case that the coefficient type is Modularizable
and that it is not. If the type is not Modularizable
the filter is just not applied and the function returns true.
Further note that the implementation of class Residue
requires a mantissa precision according to the IEEE Standard for Floating-Point Arithmetic (IEEE 754). However, on some processors the traditional FPU uses an extended precision. Hence, it is indispensable that the proper mantissa length is enforced before performing any arithmetic operations. Moreover, it is required that numbers are rounded to the next nearest value. This can be ensured using Protect_FPU_rounding
with CGAL_FE_TONEAREST
, which also enforces the required precision as a side effect.
下面的例子中,求余的运算用于过滤,避免多项式中不必要的GCD计算。GCD计算十分耗时,由于欧几里德算法(Euclidean algorithm)中的系数的增长。
通用的思路是,首先GCD计算只涉及一个素数。如果这个模GCD(modular gcd )是一个常数,我们可以推测大多数情况下实际的GCD也是一个常数。(不懂!!!!)
出于这个目的,例子中引入了一个函数may_have_common_factor()。这个函数有两个版本,分别用于系数类型是Modularizable和非Modularizable时。如果是后者,则过滤器则不会被使用,函数返回true.
另外,根据IEEE浮点运算标准(IEEE754)Residue类的实现要求尾数的精度。但在有些处理器中传统的FPU使用一个扩展的精度,所以必须在进行任何算法运算前将尾数精度进行适当设置。同是,要求将数舍入到最近的值,这个要求可通过带CGAL_FE_TONEAREST参数的Protect_FPU_rounding
来完成,它也同时将尾数精度进行了适当设置。
File Modular_arithmetic/modular_filter.cpp
Modular Arithmetic ( Arithmetic and Algebra) CGAL 4.13 -User Manual的更多相关文章
- Algebraic Foundations ( Arithmetic and Algebra) CGAL 4.13 -User Manual
理解: 本节主要介绍CGAL的代数结构和概念之间的互操作.与传统数论不同,CGAL的代数结构关注于实数轴的“可嵌入”特征.它没有将所有传统数的集合映射到自己的代数结构概念中,避免使用“数的类型”这一术 ...
- Polynomial ( Arithmetic and Algebra) CGAL 4.13 -User Manual
1 Fundamentals A polynomial is either zero, or can be written as the sum of one or more non-zero ter ...
- Algebraic Kernel ( Arithmetic and Algebra) CGAL 4.13 -User Manual
1 Introduction Real solving of polynomials is a fundamental problem with a wide application range. T ...
- Linear and Quadratic Programming Solver ( Arithmetic and Algebra) CGAL 4.13 -User Manual
1 Which Programs can be Solved? This package lets you solve convex quadratic programs of the general ...
- Monotone and Sorted Matrix Search ( Arithmetic and Algebra) CGAL 4.13 -User Manual
monotone_matrix_search() and sorted_matrix_search() are techniques that deal with the problem of eff ...
- dD Geometry Kernel ( Geometry Kernels) CGAL 4.13 -User Manual
1 Introduction This part of the reference manual covers the higher-dimensional kernel. The kernel co ...
- 2D and 3D Linear Geometry Kernel ( Geometry Kernels) CGAL 4.13 -User Manual
1 Introduction CGAL, the Computational Geometry Algorithms Library, is written in C++ and consists o ...
- 2D Polygons( Poygon) CGAL 4.13 -User Manual
1 Introduction A polygon is a closed chain of edges. Several algorithms are available for polygons. ...
- 2D Convex Hulls and Extreme Points( Convex Hull Algorithms) CGAL 4.13 -User Manual
1 Introduction A subset S⊆R2 is convex if for any two points p and q in the set the line segment wit ...
随机推荐
- POI导出Excel和InputStream存储为文件
POI导出Excel和InputStream存储为文件 本文需要说明的两个问题 InputStream如何保存到某个文件夹下 POI生成Excel POI操作utils类 代码如下.主要步骤如下: ...
- mybatis一对多关联查询+pagehelper->分页错误
mybatis一对多关联查询+pagehelper->分页错误. 现象: 网上其他人遇到的类似问题:https://segmentfault.com/q/1010000009692585 解决: ...
- PyDev for eclipse 插件下载地址
PyDev for eclipse 插件下载地址http://sourceforge.net/projects/pydev/files/pydev/python解释器以及python类库下载地址htt ...
- c++类对象 指针区别
class Test{ public: int a; Test(){ a = ; } }; int main1() { Test* t1 = new Test(); t1->a = ; Test ...
- JSP的动态导入
<body> <!-- 动态引入 他们引入的相互独立的代码段 所以可以运行 代码段之间存在重复的变量 --> this is a test dy include 01 < ...
- objects & values & types
[objects & values & types] 1.Every object has an identity, a type and a value. An object’s i ...
- sed的基础应用
sed是一个非交互式的文本编辑器:sed一行一行的处理文件 sed有模式空间(主要活动空间)和缓存空间(辅助空间)两个空间: 模式空间(pattern space)将文件中的一行内容读取到临时缓冲区( ...
- Android系统自带样式(@android:style/) (转)
1 android:theme="@android:style/Theme.Holo.Light.NoActionBar.Fullscreen" 布局页面最上面 不会显示 and ...
- 每月IT摘录201806
一.技术 1.架构师的技术升级要点:用两个字来描述:集群,用三个字:分布式,再用多点的文字:把海量的流量和数据合理分摊到数量合适的机器上. 想明白这点,后面就能知道该学哪些了,比如流量分摊时得负载均衡 ...
- jsp生成好看的验证码
这是一个Servlet,名字是ImageServlet package a; import java.awt.Color; import java.awt.Font; import java.awt. ...