spark 调优概述
分为几个部分:
开发调优、资源调优、数据倾斜调优、shuffle调优
开发调优:
主要包括这几个方面 RDD lineage设计、算子的合理使用、特殊操作的优化等
避免创建重复的RDD,尽可能复用同一个RDD 一个RDD包含另外一个RDD,对多次使用的RDD进行持久化 内存(序列化),磁盘(序列化)
尽量避免使用shuffle类算子
shuffle过程中,各个节点上的相同key都会先写入本地磁盘文件中,然后其他节点需要通过网络传输拉取各个节点上的磁盘文件中的相同key。而且相同key都拉取到同一个节点进行聚合操作时,还有可能会因为一个节点上处理的key过多,导致内存不够存放,进而溢写到磁盘文件中。因此在shuffle过程中,可能会发生大量的磁盘文件读写的IO操作,以及数据的网络传输操作。磁盘IO和网络数据传输也是shuffle性能较差的主要原因。
使用高性能的函数算子
使用map-side预聚合的shuffle操作
所谓的map-side预聚合,说的是在每个节点本地对相同的key进行一次聚合操作,类似于MapReduce中的本地combiner。map-side预聚合之后,每个节点本地就只会有一条相同的key,因为多条相同的key都被聚合起来了。其他节点在拉取所有节点上的相同key时,就会大大减少需要拉取的数据数量,从而也就减少了磁盘IO以及网络传输开销。使用reduceByKey/aggregateByKey替代groupByKey
因为reduceByKey和aggregateByKey算子都会使用用户自定义的函数对每个节点本地的相同key进行预聚合。而groupByKey算子是不会进行预聚合的,全量的数据会在集群的各个节点之间分发和传输,性能相对来说比较差。使用mapPartitions替代普通map
mapPartitions类的算子,一次函数调用会处理一个partition所有的数据,而不是一次函数调用处理一条,性能相对来说会高一些。但是有的时候,使用mapPartitions会出现OOM(内存溢出)的问题。因为单次函数调用就要处理掉一个partition所有的数据,如果内存不够,垃圾回收时是无法回收掉太多对象的,很可能出现OOM异常。所以使用这类操作时要慎重!使用foreachPartitions替代foreach
原理类似于“使用mapPartitions替代map”,也是一次函数调用处理一个partition的所有数据,而不是一次函数调用处理一条数据。在实践中发现,foreachPartitions类的算子,对性能的提升还是很有帮助的。比如在foreach函数中,将RDD中所有数据写MySQL,那么如果是普通的foreach算子,就会一条数据一条数据地写,每次函数调用可能就会创建一个数据库连接,此时就势必会频繁地创建和销毁数据库连接,性能是非常低下;但是如果用foreachPartitions算子一次性处理一个partition的数据,那么对于每个partition,只要创建一个数据库连接即可,然后执行批量插入操作,此时性能是比较高的。使用repartitionAndSortWithinPartitions替代repartition与sort类操作
使用Kryo优化序列化性能 比默认的java序列化性能高
优化数据结构
- 尽量使用字符串替代对象,使用原始类型(比如Int、Long)替代字符串,使用数组替代集合类型,这样尽可能地减少内存占用,从而降低GC频率,提升性能。
资源调优
运行时的关键点
Spark是根据shuffle类算子来进行stage的划分。如果我们的代码中执行了某个shuffle类算子(比如reduceByKey、join等),那么就会在该算子处,划分出一个stage界限来。可以大致理解为,shuffle算子执行之前的代码会被划分为一个stage,shuffle算子执行以及之后的代码会被划分为下一个stage。因此一个stage刚开始执行的时候,它的每个task可能都会从上一个stage的task所在的节点,去通过网络传输拉取需要自己处理的所有key,然后对拉取到的所有相同的key使用我们自己编写的算子函数执行聚合操作(比如reduceByKey()算子接收的函数)。这个过程就是shuffle。
因此Executor的内存主要分为三块:
第一块是让task执行我们自己编写的代码时使用,默认是占Executor总内存的20%;
第二块是让task通过shuffle过程拉取了上一个stage的task的输出后,进行聚合等操作时使用,默认也是占Executor总内存的20%;
第三块是让RDD持久化时使用,默认占Executor总内存的60%。
task的执行速度是跟每个Executor进程的CPU core数量有直接关系的。一个CPU core同一时间只能执行一个线程。而每个Executor进程上分配到的多个task,都是以每个task一条线程的方式,多线程并发运行的。如果CPU core数量比较充足,而且分配到的task数量比较合理,那么通常来说,可以比较快速和高效地执行完这些task线程。
了解完了Spark作业运行的基本原理之后,对资源相关的参数就容易理解了。
num-executors
设置Spark作业总共要用多少个Executor进程来执行。建议:50~100个左右的Executor进程executor-memory
设置每个Executor进程的内存。检建议:每个Executor进程的内存设置4G8G较为合适,num-executors乘以executor-memory,是不能超过队列的最大内存量的,一般1/31/2executor-cores
设置每个Executor进程的CPU core数量。建议:Executor的CPU core数量设置为2~4个较为合适driver-memory
要使用collect算子将RDD的数据全部拉取到Driver上进行处理,那么必须确保Driver的内存足够大,否则会出现OOM内存溢出的问题spark.default.parallelism
该参数用于设置每个stage的默认task数量。这个参数极为重要,如果不设置可能会直接影响你的Spark作业性能。
Spark作业的默认task数量为500~1000个较为合适。如果不设置这个参数,那么此时就会导致Spark自己根据底层HDFS的block数量来设置task的数量,默认是一个HDFS block对应一个task。通常来说,Spark默认设置的数量是偏少的(比如就几十个task),如果task数量偏少的话,就会导致你前面设置好的Executor的参数都前功尽弃。试想一下,无论你的Executor进程有多少个,内存和CPU core有多大,但是task只有1个或者10个,那么90%的Executor进程可能根本就没有task执行,也就是白白浪费了资源!因此Spark官网建议的设置原则是,设置该参数为num-executors * executor-cores的2~3倍较为合适,比如Executor的总CPU core数量为300个,那么设置1000个task是可以的,此时可以充分地利用Spark集群的资源。
spark.storage.memoryFraction
设置RDD持久化数据在Executor内存中能占的比例,默认是0.6。当操作中有较多的RDD持久化操作,该参数的值可以适当提高一些,少的话就相对少一点spark.shuffle.memoryFraction
设置shuffle过程中一个task拉取到上个stage的task的输出后,进行聚合操作时能够使用的Executor内存的比例,默认是0.2。也就是说,Executor默认只有20%的内存用来进行该操作。shuffle操作在进行聚合时,如果发现使用的内存超出了这个20%的限制,那么多余的数据就会溢写到磁盘文件中去,此时就会极大地降低性能。
以下是一份spark-submit命令的示例,大家可以参考一下,并根据自己的实际情况进行调节:
./bin/spark-submit \
--master yarn-cluster \
--num-executors 100 \
--executor-memory 6G \
--executor-cores 4 \
--driver-memory 1G \
--conf spark.default.parallelism=1000 \
--conf spark.storage.memoryFraction=0.5 \
--conf spark.shuffle.memoryFraction=0.3 \
数据倾斜调优
数据倾斜发生的原理:
在进行shuffle的时候,必须将各个节点上相同的key拉取到某个节点上的一个task来进行处理,比如按照key进行聚合或join等操作。此时如果某个key对应的数据量特别大的话,就会发生数据倾斜。比如大部分key对应10条数据,但是个别key却对应了100万条数据,那么大部分task可能就只会分配到10条数据,然后1秒钟就运行完了;但是个别task可能分配到了100万数据,要运行一两个小时。因此,整个Spark作业的运行进度是由运行时间最长的那个task决定的。
如何定位导致数据倾斜的代码和数据分部情况:
数据倾斜只会发生在shuffle过程中。这里给大家罗列一些常用的并且可能会触发shuffle操作的算子:distinct、groupByKey、reduceByKey、aggregateByKey、join、cogroup、repartition等。出现数据倾斜时,可能就是你的代码中使用了这些算子中的某一个所导致的。
我们都可以在Spark Web UI上深入看一下当前这个stage各个task分配的数据量,从而进一步确定是不是task分配的数据不均匀导致了数据倾斜
- 如果是Spark SQL中的group by、join语句导致的数据倾斜,那么就查询一下SQL中使用的表的key分布情况。
- 如果是对Spark RDD执行shuffle算子导致的数据倾斜,那么可以在Spark作业中加入查看key分布的代码,比如RDD.countByKey()。然后对统计出来的各个key出现的次数,collect/take到客户端打印一下,就可以看到key的分布情况。
提高shuffle操作的并行度(优先考虑)
增加shuffle read task的数量,可以让原本分配给一个task的多个key分配给多个task,从而让每个task处理比原来更少的数据。举例来说,如果原本有5个key,每个key对应10条数据,这5个key都是分配给一个task的,那么这个task就要处理50条数据。而增加了shuffle read task以后,每个task就分配到一个key,即每个task就处理10条数据,那么自然每个task的执行时间都会变短了
该方案通常无法彻底解决数据倾斜,因为如果出现一些极端情况,比如某个key对应的数据量有100万,那么无论你的task数量增加到多少,这个对应着100万数据的key肯定还是会分配到一个task中去处理,因此注定还是会发生数据倾斜的。
两阶段聚合(局部聚合+全局聚合)
这个方案的核心实现思路就是进行两阶段聚合。第一次是局部聚合,先给每个key都打上一个随机数,比如10以内的随机数,此时原先一样的key就变成不一样的了,比如(hello, 1) (hello, 1) (hello, 1) (hello, 1),就会变成(1_hello, 1) (1_hello, 1) (2_hello, 1) (2_hello, 1)。接着对打上随机数后的数据,执行reduceByKey等聚合操作,进行局部聚合,那么局部聚合结果,就会变成了(1_hello, 2) (2_hello, 2)。然后将各个key的前缀给去掉,就会变成(hello,2)(hello,2),再次进行全局聚合操作,就可以得到最终结果了,仅仅适用于聚合类的shuffle操作。
将reduce join转为map join(广播+map)
普通的join是会走shuffle过程的,而一旦shuffle,就相当于会将相同key的数据拉取到一个shuffle read task中再进行join,此时就是reduce join。但是如果一个RDD是比较小的,则可以采用广播小RDD全量数据+map算子来实现与join同样的效果,也就是map join,此时就不会发生shuffle操作,也就不会发生数据倾斜。具体原理如下图所示
适用场景较少,因为这个方案只适用于一个大表和一个小表的情况。
采样倾斜key并分拆join操作
对于join导致的数据倾斜,如果只是某几个key导致了倾斜,可以将少数几个key分拆成独立RDD,并附加随机前缀打散成n份去进行join,此时这几个key对应的数据就不会集中在少数几个task上,而是分散到多个task进行join了
如果导致倾斜的key特别多的话,比如成千上万个key都导致数据倾斜,那么这种方式也不适合
使用随机前缀和扩容RDD进行join
将原先一样的key通过附加随机前缀变成不一样的key,然后就可以将这些处理后的“不同key”分散到多个task中去处理,而不是让一个task处理大量的相同key。该方案上一个的不同之处就在于,上一种方案是尽量只对少数倾斜key对应的数据进行特殊处理,由于处理过程需要扩容RDD,因此上一种方案扩容RDD后对内存的占用并不大;而这一种方案是针对有大量倾斜key的情况,没法将部分key拆分出来进行单独处理,因此只能对整个RDD进行数据扩容,对内存资源要求很高。
shuffle调优
调优概述
大多数Spark作业的性能主要就是消耗在了shuffle环节,因为该环节包含了大量的磁盘IO、序列化、网络数据传输等操作。因此,如果要让作业的性能更上一层楼,就有必要对shuffle过程进行调优。
ShuffleManager发展概述
负责shuffle过程的执行、计算和处理的组件主要就是ShuffleManager,也即shuffle管理器。而随着Spark的版本的发展,ShuffleManager也在不断迭代,变得越来越先进。
在Spark 1.2以前,默认的shuffle计算引擎是HashShuffleManager。该ShuffleManager有着一个非常严重的弊端,就是会产生大量的中间磁盘文件,进而由大量的磁盘IO操作影响了性能。
因此在Spark 1.2以后的版本中,默认的ShuffleManager改成了SortShuffleManager。SortShuffleManager相较于HashShuffleManager来说,有了一定的改进。主要就在于,每个Task在进行shuffle操作时,虽然也会产生较多的临时磁盘文件,但是最后会将所有的临时文件合并(merge)成一个磁盘文件,因此每个Task就只有一个磁盘文件。在下一个stage的shuffle read task拉取自己的数据时,只要根据索引读取每个磁盘文件中的部分数据即可。
HashShuffleManager运行原理
未经优化的HashShuffleManager
shuffle write阶段
一个stage结束计算之后,为了下一个stage可以执行shuffle类的算子,而将每个task处理的数据按key进行“分类”,将相同key都写入(通过一个内存缓冲buffer)同一个磁盘文件中,而每一个磁盘文件都只属于下游stage的一个task。
shuffle read
通常就是一个stage刚开始时要做的事情。此时该stage的每一个task就需要将上一个stage的计算结果中的所有相同key,从各个节点上通过网络都拉取write阶段创建的属于自己的那一个磁盘文件到自己所在的节点上,然后进行key的聚合或连接等操作。
优化后的HashShuffleManager
spark.shuffle.consolidateFiles默认为false,如果设置为ture开启优化机制。 write过程中,task就不是为下游stage的每个task创建一个磁盘文件了。此时会出现shuffleFileGroup的概念,每个shuffleFileGroup会对应一批磁盘文件,磁盘文件的数量与下游stage的task数量是相同的。一个Executor上有多少个CPU core,就可以并行执行多少个task。而第一批并行执行的每个task都会创建一个shuffleFileGroup,并将数据写入对应的磁盘文件内。
当Executor的CPU core执行完一批task,接着执行下一批task时,下一批task就会复用之前已有的shuffleFileGroup,包括其中的磁盘文件。
SortShuffleManager运行原理
在该模式下,数据会先写入一个内存数据结构中,此时根据不同的shuffle算子,可能选用不同的数据结构。如果是reduceByKey这种聚合类的shuffle算子,那么会选用Map数据结构,一边通过Map进行聚合,一边写入内存;如果是join这种普通的shuffle算子,那么会选用Array数据结构,直接写入内存。接着,每写一条数据进入内存数据结构之后,就会判断一下,是否达到了某个临界阈值。如果达到临界阈值的话,那么就会尝试将内存数据结构中的数据溢写到磁盘,然后清空内存数据结构。
在溢写到磁盘文件之前,会先根据key对内存数据结构中已有的数据进行排序。排序过后,会分批将数据写入磁盘文件
会产生多个临时文件。最后会将之前所有的临时磁盘文件都进行合并,这就是merge过程,此时会将之前所有临时磁盘文件中的数据读取出来,然后依次写入最终的磁盘文件之中。
SortShuffleManager由于有一个磁盘文件merge的过程,因此大大减少了文件数量。比如第一个stage有50个task,总共有10个Executor,每个Executor执行5个task,而第二个stage有100个task。由于每个task最终只有一个磁盘文件,因此此时每个Executor上只有5个磁盘文件,所有Executor只有50个磁盘文件。
bypass运行机制
下图说明了bypass SortShuffleManager的原理。bypass运行机制的触发条件如下:
shuffle map task数量小于spark.shuffle.sort.bypassMergeThreshold参数的值。
不是聚合类的shuffle算子(比如reduceByKey)。
此时task会为每个下游task都创建一个临时磁盘文件,并将数据按key进行hash然后根据key的hash值,将key写入对应的磁盘文件之中。当然,写入磁盘文件时也是先写入内存缓冲,缓冲写满之后再溢写到磁盘文件的。最后,同样会将所有临时磁盘文件都合并成一个磁盘文件,并创建一个单独的索引文件。
该过程的磁盘写机制其实跟未经优化的HashShuffleManager是一模一样的,因为都要创建数量惊人的磁盘文件,只是在最后会做一个磁盘文件的合并而已。因此少量的最终磁盘文件,也让该机制相对未经优化的HashShuffleManager来说,shuffle read的性能会更好。
而该机制与普通SortShuffleManager运行机制的不同在于:第一,磁盘写机制不同;第二,不会进行排序。也就是说,启用该机制的最大好处在于,shuffle write过程中,不需要进行数据的排序操作,也就节省掉了这部分的性能开销。
shuffle相关参数调优
spark.shuffle.file.buffer
默认32K ,shuffle write task缓冲大小,适当跳大(64K)可以减少shuffle write过程中溢写磁盘文件的次数spark.reducer.maxSizeInFlight
默认48M,shuffle read task的buffer缓冲大小spark.shuffle.io.maxRetries
默认3,huffle read task从shuffle write task拉取数据如果失败的重试次数,数据量特别大的时候可以增加,调节该参数可以大幅度提升稳定性。spark.shuffle.io.retryWait
默认5S,每次重试拉取数据的等待间隔,增大(60S),提高稳定性spark.shuffle.memoryFraction
默认0.2,Executor内存中,分配给shuffle read task进行聚合操作的内存比例spark.shuffle.manager
设置ShuffleManager的类型,可选项:hash、sort和tungsten-sort。业务如果需要排序,就用sort,不需要排序就用bypass机制,避免排序。spark.shuffle.sort.bypassMergeThreshold
默认200,当ShuffleManager为SortShuffleManager时,如果shuffle read task的数量小于这个阈值(默认是200),则shuffle write过程中不会进行排序操作
spark.shuffle.consolidateFiles
默认false,设置为true,那么就会开启consolidate机制,会大幅度合并shuffle write的输出文件
本来绝大部分观点来自美团点评(https://tech.meituan.com/spark-tuning-basic.html),经过自己的实践发现在开发,资源,数据倾斜方面的调优可以有着明显的效果,而shuffle调优的结果并不明显。所以大家在调优的过程中一定要注意优先级。
spark 调优概述的更多相关文章
- 【Spark调优】数据倾斜及排查
[数据倾斜及调优概述] 大数据分布式计算中一个常见的棘手问题——数据倾斜: 在进行shuffle的时候,必须将各个节点上相同的key拉取到某个节点上的一个task来进行处理,比如按照key进行聚合或j ...
- spark 调优——基础篇
开发调优 调优概述 Spark性能优化的第一步,就是要在开发Spark作业的过程中注意和应用一些性能优化的基本原则.开发调优,就是要让大家了解以下一些Spark基本开发原则,包括:RDD lineag ...
- 【Spark学习】Apache Spark调优
Spark版本:1.1.0 本文系以开源中国社区的译文为基础,结合官方文档翻译修订而来,转载请注明以下链接: http://www.cnblogs.com/zhangningbo/p/4117981. ...
- 【Spark调优】提交job资源参数调优
[场景] Spark提交作业job的时候要指定该job可以使用的CPU.内存等资源参数,生产环境中,任务资源分配不足会导致该job执行中断.失败等问题,所以对Spark的job资源参数分配调优非常重要 ...
- 【Spark调优】大表join大表,少数key导致数据倾斜解决方案
[使用场景] 两个RDD进行join的时候,如果数据量都比较大,那么此时可以sample看下两个RDD中的key分布情况.如果出现数据倾斜,是因为其中某一个RDD中的少数几个key的数据量过大,而另一 ...
- 【Spark调优】小表join大表数据倾斜解决方案
[使用场景] 对RDD使用join类操作,或者是在Spark SQL中使用join语句时,而且join操作中的一个RDD或表的数据量比较小(例如几百MB或者1~2GB),比较适用此方案. [解决方案] ...
- 【Spark调优】Broadcast广播变量
[业务场景] 在Spark的统计开发过程中,肯定会遇到类似小维表join大业务表的场景,或者需要在算子函数中使用外部变量的场景(尤其是大变量,比如100M以上的大集合),那么此时应该使用Spark的广 ...
- 【Spark调优】Kryo序列化
[Java序列化与反序列化] Java序列化是指把Java对象转换为字节序列的过程:而Java反序列化是指把字节序列恢复为Java对象的过程.序列化使用场景:1.数据的持久化,通过序列化可以把数据永久 ...
- 【翻译】Spark 调优 (Tuning Spark) 中文版
由于Spark自己的调优guidance已经覆盖了很多很有价值的点,因此这里直接翻译一份过来.也作为一个积累. Spark 调优 (Tuning Spark) 由于大多数Spark计算任务是在内存中运 ...
随机推荐
- linux系统中,tee命令的使用
需求描述: 今天在看nginx内容的过程,遇到了tee这个命令,所以查询了下,在这里记录下使用方法. 操作过程: 1.执行以下的命令 [root@testvm ~]# uname -n | tee h ...
- C# Serializable(转)
C# Serializable System.SerializableAttribute 串行化是指存储和获取磁盘文件.内存或其他地方中的对象.在串行化时,所有的实例数据都保存到存储介质上,在取消串行 ...
- mybatis由浅入深day02_2一对一查询_2.2方法一:resultType
2 一对一查询 2.1 需求(查询所有订单信息,关联查询创建订单的用户信息) 查询所有订单信息,关联查询创建订单的用户信息 注意:因为一个订单信息只会是一个人下的订单,所以从查询订单信息出发关联查询用 ...
- 对double数据类型的数据保留两位小数,并且进行四舍五入
1.代码如下: /** * 对double数据类型的数据 保留两位小数,并且进行四舍五入 * @author Administrator */ public class Main { // 工具类 p ...
- eclipse启动错误
1.错误日志 !SESSION 2013-12-09 12:24:33.826 -----------------------------------------------eclipse.build ...
- Windows系统调用架构分析—也谈KiFastCallEntry函数地址的获取
为什么要写这篇文章 1. 因为最近在学习<软件调试>这本书,看到书中的某个调试历程中讲了Windows的系统调用的实现机制,其中讲到了从Ring3跳转到Ring0之后直接进入了K ...
- printf如何输出64位整数
From: http://blog.csdn.net/zzqhost/article/details/6064886 关于printf函数输出64位数的问题,其实在window下和linux下是不一样 ...
- poj2096 Collecting Bugs[期望dp]
Collecting Bugs Time Limit: 10000MS Memory Limit: 64000K Total Submissions: 5394 Accepted: 2670 ...
- 3149: [Ctsc2013]复原
3149: [Ctsc2013]复原 Time Limit: 10 Sec Memory Limit: 128 MBSec Special JudgeSubmit: 95 Solved: 44[ ...
- Linux应急响应思路详谈
一.主机篇: 1.自动化初筛,建议使用RootkitHunter (1)安装 $sudo wget https://jaist.dl.sourceforge.net/project/rkhunter/ ...