1135: [POI2009]Lyz
1135: [POI2009]Lyz
https://lydsy.com/JudgeOnline/problem.php?id=1135
分析:
hall定理+线段树连续区间的最大的和。
首先转化为二分图的模型,然后根据hall定理
Hall定理:
此定理使用于组合问题中,二部图G中的两部分顶点组成的集合分别为X, Y, X={X1, X2, X3,X4,.........,Xm}, Y={y1, y2, y3, y4 ,.........,yn},G中有一组无公共点的边,一端恰好为组成X的点的充分必要条件是:
X中的任意k个点至少与Y中的k个点相邻。(1≤k≤m)
那么如果直接枚举子集的话肯定不行,如果满足了最劣的情况,那么也就全满足了,所以考虑如何求出最劣的情况。
假设当前有连续的k个人[l,r],他们对应的鞋子区间是[l,r+d],那么如果此时有l-1处有a[l-1]:如果a[l-1]>k,那么将l-1和[l,r]这些人数的区间合成[l-1,r]的时候,增加的人数大于鞋子的个数,一定比分开算劣,所以就合起来。否则a[l-1]<=k,合起来比现在优,那么就不合起来。
所以最劣的情况就是对a[i]-k,求最大的子段和。
代码:
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<iostream>
#include<cmath>
#include<cctype>
#include<set>
#include<queue>
#include<vector>
#include<map>
using namespace std;
typedef long long LL; inline int read() {
int x=,f=;char ch=getchar();for(;!isdigit(ch);ch=getchar())if(ch=='-')f=-;
for(;isdigit(ch);ch=getchar())x=x*+ch-'';return x*f;
} const int N = ; struct Node{
LL ls, rs, sum, mx;
}T[N << ];
LL a[N]; void pushup(int rt) {
T[rt].ls = max(T[rt << ].ls, T[rt << ].sum + T[rt << | ].ls);
T[rt].rs = max(T[rt << | ].rs, T[rt << | ].sum + T[rt << ].rs);
T[rt].sum = T[rt << ].sum + T[rt << | ].sum;
T[rt].mx = max(T[rt << ].rs + T[rt << | ].ls, max(T[rt << ].mx, T[rt << | ].mx));
}
void update(int l,int r,int rt,int p,LL x) { // LL x !!!
if (l == r) {
T[rt].ls = T[rt].rs = T[rt].sum = T[rt].mx = x; return ;
}
int mid = (l + r) >> ;
if (p <= mid) update(l, mid, rt << , p, x);
else update(mid + , r, rt << | , p, x);
pushup(rt);
}
int main() {
int n = read(), m = read(); LL k = read(), d = read(), mx = d * k;
n -= d;
for (int i = ; i <= n; ++i) update(, n, , i, -k);
while (m --) {
int p = read(), x = read();
a[p] = a[p] + x;
update(, n, , p, a[p] - k);
puts(T[].mx <= mx ? "TAK" : "NIE");
}
return ;
}
1135: [POI2009]Lyz的更多相关文章
- [BZOJ 1135][POI2009]Lyz
[BZOJ 1135][POI2009]Lyz 题意 初始时滑冰俱乐部有 \(1\) 到 \(n\) 号的溜冰鞋各 \(k\) 双.已知 \(x\) 号脚的人可以穿 \(x\) 到 \(x+d\) 的 ...
- bzoj 1135 [POI2009]Lyz 线段树+hall定理
1135: [POI2009]Lyz Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 573 Solved: 280[Submit][Status][ ...
- 【BZOJ】1135: [POI2009]Lyz
题意 有\(1\)到\(n(1 \le n \le 200000)\)号的溜冰鞋各\(k(1 \le k \le 10^9)\)双.已知\(x\)号脚的人可以穿\(x\)到\(x+d\)的溜冰鞋. 有 ...
- BZOJ1135: [POI2009]Lyz
1135: [POI2009]Lyz Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 264 Solved: 106[Submit][Status] ...
- 【BZOJ1135】[POI2009]Lyz 线段树
[BZOJ1135][POI2009]Lyz Description 初始时滑冰俱乐部有1到n号的溜冰鞋各k双.已知x号脚的人可以穿x到x+d的溜冰鞋. 有m次操作,每次包含两个数ri,xi代表来了x ...
- 【题解】 bzoj1135: [POI2009]Lyz (线段树+霍尔定理)
题面戳我 Solution 二分图是显然的,用二分图匹配显然在这个范围会炸的很惨,我们考虑用霍尔定理. 我们任意选取穿\(l,r\)的号码鞋子的人,那么这些人可以穿的鞋子的范围是\(l,r+d\),这 ...
- 【BZOJ1135】[POI2009]Lyz
题解: hall定理..第一次听说 思考了半小时无果 二分图匹配时间显然太大 但是有这个hall定理 二分图有完美匹配的充要条件是 对于左边任意一个集合(大小为|s|),其连边点构成的集合(大小为|s ...
- [BZOJ1135][POI2009]Lyz[霍尔定理+线段树]
题意 题目链接 分析 这个二分图匹配模型直接建图的复杂度太高,考虑霍尔定理. 对于某些人组成的区间,我们只需要考虑他们的并是一段连续的区间的集合.更进一步地,我们考虑的人一定是连续的. 假设我们考虑的 ...
- BZOJ1135:[POI2009]Lyz(线段树,Hall定理)
Description 初始时滑冰俱乐部有1到n号的溜冰鞋各k双.已知x号脚的人可以穿x到x+d的溜冰鞋. 有m次操作,每次包含两个数ri,xi代表来了xi个ri号脚的人.xi为负,则代表走了这么多人 ...
随机推荐
- BZOJ 1036 树的统计Count 树链剖分模板题
题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=1036 题目大意: 一棵树上有n个节点,编号分别为1到n,每个节点都有一个权值w.我们将 ...
- POJ1039 Pipe
嘟嘟嘟 大致题意:按顺序给出\(n\)个拐点表示一个管道,注意这些点是管道的上端点,下端点是对应的\((x_i, y_i - 1)\).从管道口射进一束光,问能达到最远的位置的横坐标.若穿过管道,输出 ...
- POJ2318 TOYS
嘟嘟嘟 题面:先告诉你一个矩形抽屉的坐标,然后\(n\)个隔板将抽屉分成了\(n + 1\)格(格子从\(0\)到\(n - 1\)标号),接下来随机输入\(m\)个玩具的坐标.问最后每一个格子里有多 ...
- 【bootstrap】面包屑导航(Breadcrumbs)
.breadcrumb > li + li:before { color: #CCCCCC; content: "/ "; padding: 0 5px; } <ol ...
- [Python 多线程] Condition (十)
Condition常用于生产者.消费者模型,为了解决生产者消费者速度匹配问题. 构造方法Condition(lock=None),可以传入一个Lock或RLock对象,默认RLock. 方法: acq ...
- 如何寫一個自定義控件/vs2010生成Dll文件并引用dll(C#)
1.最簡單的例子 首先你先新建->項目->類庫.然後右鍵項目.添加一個用戶控件.設置其用戶控件繼承button. egg: namespace ClassLibrary1{ publ ...
- ubuntu查询命令行安装的软件的安装路径
which git // 查询git的安装路径
- 【HTML-进阶-如何实现父级块级元素宽度自适应子元素宽度】
背景 块级元素宽度默认值为100%,而不是auto;因此其宽度不会根据子元素内容动态适应. 如何实现父级元素宽度动态适应其子元素. 方法一 display:inline; 给块级元素设置inline- ...
- Java编写画图板程序细节-保存已画图形
没有Java编写画图板程序细节-保存已画图形 一.为何我们要保存画图板上已画图形呢? 有很多人会问,为什么我们一定要保存画图板上已经画好了的图形呢?原因很简单.当我们在画图板上画完自己想画的图形后 ...
- jquery ajax 滚动加载数据
jquery php 滚动加载数据(文件包 rollingpage) 效果如下: 页面加载时候($function(){ 自动加载第一页数据 }) 设置: var winH = $(window).h ...