十二、spark MLlib的scala示例
简介
spark MLlib官网:http://spark.apache.org/docs/latest/ml-guide.html
mllib是spark core之上的算法库,包含了丰富的机器学习的一系列算法。你可以通过简单的API来构建算法模型,然后利用模型来进行预测分析推荐之类的。
它包含了一些工具,如:
1)算法工具:分类、回归、聚类、协同等
2)特征化工具:特征提取、转换、降维、选择等
3)管道:用于构建、评估和调整机器学习管道的工具
4)持久性:保存和加载算法、模型、管道
5)实用工具:线性代数、统计、数据处理等工具
spark MLlib支持的算法很丰富,以下将以ALS推荐算法为例,简单使用MLlib
ALS简介
目前热门的推荐算法主要是协同过滤算法,而ALS(alternate least square:交替最小二乘法)指的是使用最小二乘法的协同过滤算法。
ALS在mllib.recommendation.ALS中,使用步骤如下:
1)输入RDD,类型为mllib.recommendation.Rating
2)调用train方法训练出模型,类型未mllib.recommendation.MatrixFactorizationModel
有了ALS模型以后,我们可以利用这个模型去做一些预测
代码示例
以下代码,使用Array数组模拟了一份简单的数据(用户ID, 商品ID, 评分),并生成RDD。
我们将RDD作为输入,进行模型训练。而后,我们拿训练好的模型进行预测:用户ID=1,产品ID=2的评分
import org.apache.spark.mllib.recommendation.{ALS, MatrixFactorizationModel, Rating}
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext} /**
* @Description spark 协同过滤推荐算法示例
* @Author lay
* @Date 2018/12/10 22:29
*/
object SparkALSDemo {
var conf: SparkConf = _
var sc: SparkContext = _
var data: Array[String] = Array("1,1,1.0", "1,2,2.0", "1,3,4.5", "2,3,4.0", "2,4,5.0")
var dataRDD: RDD[(Int, Int, Float)] = _
var ratings: RDD[Rating] = _
var model: MatrixFactorizationModel = _ def init: Unit = {
conf = new SparkConf().setAppName("spark als demo").setMaster("local")
sc = new SparkContext(conf)
} def makeRdd: Unit = {
dataRDD = sc.parallelize(data).map{x => val lines = x.split(","); (lines(0).toInt, lines(1).toInt, lines(2).toFloat)}
ratings = dataRDD.map(x => Rating(x._1, x._2, x._3))
} def trainModel: Unit = {
val rank = 10 // 向量大小,默认10
val iterations = 10 // 迭代次数,默认10
model = ALS.train(ratings, rank, iterations)
} def main(args: Array[String]): Unit = {
// 初始化
init
// 生成RDD
makeRdd
// 训练模型
trainModel
// 预测结果
val result = model.predict(1, 2)
println("预测评分:" + result)
}
}
输出结果为:
预测评分:1.9874704066075966
我们看到预测数据与我们的训练数据 “2” 近似
以上代码只是做了一个简单的过程演示,大体了解MLlib的过程是个什么样的概念。
在实际项目中,输入数量可能是海量的,并且会有训练数据和校验数据。在不断地训练和校验过程当中去迭代算法实现不断地逼近实际值,从而达到满意的结果。所以,除了模型训练过程外,机器学习中对模型的精确校验也是很重要的,它的结果标识着你的模型训练是否是一个有使用价值的模型。
spark MLlib的其它算法也是类似的使用,你只需要给它数据,然后训练模型,便可以利用模型来预测分析分类等
十二、spark MLlib的scala示例的更多相关文章
- 十、spark graphx的scala示例
简介 spark graphx官网:http://spark.apache.org/docs/latest/graphx-programming-guide.html#overview spark g ...
- spark mllib lda 简单示例
舆情系统每日热词用到了lda主题聚类 原先的版本是python项目,分词应用Jieba,LDA应用Gensim 项目工作良好 有以下几点问题 1 舆情产品基于elasticsearch大数据,es内应 ...
- Spark MLlib + maven + scala 试水~
使用SGD算法逻辑回归的垃圾邮件分类器 package com.oreilly.learningsparkexamples.scala import org.apache.spark.{SparkCo ...
- 朴素贝叶斯算法原理及Spark MLlib实例(Scala/Java/Python)
朴素贝叶斯 算法介绍: 朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法. 朴素贝叶斯的思想基础是这样的:对于给出的待分类项,求解在此项出现的条件下各个类别出现的概率,在没有其它可用信息下,我 ...
- 十一、spark SQL的scala示例
简介 spark SQL官网:http://spark.apache.org/docs/latest/sql-programming-guide.html sparkSQL是构建在sparkCore之 ...
- spark 源码分析之十二 -- Spark内置RPC机制剖析之八Spark RPC总结
在spark 源码分析之五 -- Spark内置RPC机制剖析之一创建NettyRpcEnv中,剖析了NettyRpcEnv的创建过程. Dispatcher.NettyStreamManager.T ...
- spark 源码分析之十八 -- Spark存储体系剖析
本篇文章主要剖析BlockManager相关的类以及总结Spark底层存储体系. 总述 先看 BlockManager相关类之间的关系如下: 我们从NettyRpcEnv 开始,做一下简单说明. Ne ...
- 梯度迭代树(GBDT)算法原理及Spark MLlib调用实例(Scala/Java/python)
梯度迭代树(GBDT)算法原理及Spark MLlib调用实例(Scala/Java/python) http://blog.csdn.net/liulingyuan6/article/details ...
- Spark学习之路 (二十二)SparkStreaming的官方文档
官网地址:http://spark.apache.org/docs/latest/streaming-programming-guide.html 一.简介 1.1 概述 Spark Streamin ...
随机推荐
- http协议与https协议的区别
1.前言 超文本传输协议HTTP协议被用于在Web浏览器和网站服务器之间传递信息,HTTP协议以明文方式发送内容,不提供任何方式的数据加密,如果攻击者截取了Web浏览器和网站服务器之间的传输报文,就可 ...
- 多个音频audio2
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- Lexicographical Substring Search (spoj7259) (sam(后缀自动机)+第k小子串)
Little Daniel loves to play with strings! He always finds different ways to have fun with strings! K ...
- robot framework接口测试之一-完整的测试用例
*** Settings *** Library Collections Library json Library requests Library RequestsLibrary Library H ...
- [RHEL] 配置 LVM 卷
[RHEL] 配置 LVM 卷 一.Introduction 基础预览 :LVM 认知与扩容操作 高端实战:Linux系统如何迁移至LVM磁盘 之前转过一篇文章 LVM分区在线扩容 ,其原因是我需要给 ...
- 豆瓣电影信息爬取(json)
豆瓣电影信息爬取(json) # a = "hello world" # 字符串数据类型# b = {"name":"python"} # ...
- 洛谷 P2480 [SDOI2010]古代猪文 题解【欧拉定理】【CRT】【Lucas定理】
数论综合题. 题目背景 题目背景与题目无关因此省略.题目链接 题目描述 猪王国的文明源远流长,博大精深. iPig 在大肥猪学校图书馆中查阅资料,得知远古时期猪文文字总个数为 \(N\).当然,一种语 ...
- 小程序中实时将less编译成wxss
1.npm或者yarn全局安装wxss-cli npm install -g wxss-cli 2.运行wxss-cli命令(weuiTest为小程序目录) wxss ./weuiTest 实时监听w ...
- [Xamarin] 透過StartActivityForResult傳值回來(转贴)
上一篇文章(開啟另外一個Activity 並且帶資料),提到了開啟一個新的Activity ,我們將值透過intent 帶到下個Activity 但是,如果我們開啟的Actrivity其實是有一個任務 ...
- linux MD5 SHA1 等 文件校验方法
为解决官方发布的软件包被别人更改或者软件在传输过程中出现传输错误等问题,软件官方在提供软件包的同时,还提供一个保存MD5校验码的文件. Linux/unix中可以使用 md5sum 文件名 sha1s ...