题目描述

IOI铁路是由N+2个站点构成的直线线路。这条线路的车站从某一端的车站开始顺次标号为0...N+1。
这条路线上行驶的电车分为上行电车和下行电车两种,上行电车沿编号增大方向行驶,下行电车沿编号减小方向行驶。乘坐这两种电车的话,移动1站的距离需要T秒。换句话说,乘坐上行电车从车站i走到车站i+1需要T秒,称作下行电车从车站i走到车站i-1也需要T秒。你不能在0号车站乘坐下行电车,或在N+1号车站乘坐上行电车。由于电车发车的频率非常高,你可以无视等待电车消耗的时间。
每个车站设有上行电车的站台和下行电车的站台,连接两个站台的道路上设有邮戳台。
现在,IOI铁路召开了邮戳拉力赛。在拉力赛中,选手需要从0号车站的上行电车站台出发,在1...N号车站各盖一枚邮戳,最终到达N+1号车站的上行电车站台即可完成。
为了在每个车站盖上邮戳,必须从电车上下来,步行走到车站通路上的邮戳台。在i号车站的上行电车站台、邮戳台、下行电车站台之间移动所消耗的时间如下所示:
从车站i的上行电车站台到邮戳台的时间为Ui秒
从车站i的邮戳台到上行电车站台的时间为Vi秒
从车站i的下行电车站台到邮戳台的时间为Di秒
从车站i的邮戳台到下行电车站台的时间为Ei秒
邮戳拉力赛的选手只能访问0号车站与N+1号车站各一次。1...N号车站都可以访问任意多次。
现在给出有邮戳台的车站个数、乘坐电车移动一站的时间、在每个车站的上行电车站台、邮戳台、下行电车站台之间移动所消耗的时间,请你求出完成邮戳拉力赛的最短时间。
这个时间包括从0号车站出发,按下N个邮戳后到达N+1号车站的时间。无视等车的时间和按邮戳的时间。

输入

第一行两个空格分隔的整数N和T,表示有N+2个车站,电车行驶一站的距离需要T秒
接下来N行,第i行有四个空格分隔的整数Ui,Vi,Di,Ei,分别表示:
从车站i的上行电车站台到邮戳台的时间为Ui秒
从车站i的邮戳台到上行电车站台的时间为Vi秒
从车站i的下行电车站台到邮戳台的时间为Di秒
从车站i的邮戳台到下行电车站台的时间为Ei秒

输出

输出一行一个整数,表示完成邮戳拉力赛的最短时间。

样例输入

4 1
1 1 1 1
1 9 9 1
9 9 1 1
1 9 9 1

样例输出

23


题解

只可意会不可言传的非常神的背包dp,非常难写题解因此写的不好不要怪我。。。

考虑一个车站是怎么经过的,共有以下四种情况:

从后面来、往后面走,代价为d+v;
从前面来、往前面走,代价为u+e;
从后面来、往前面走,代价为d+e;
从前面来、往后面走,代价为u+v。

那么先不考虑从0直接到n+1的必经行程,中间的部分一定是一个回路。

从左向右考虑回路的每一段,必然是若干个向右的路线。把向右的路线看作左括号,向左的看作右括号,那么有:

第1种情况为'((',第2种情况为'))',第3种情况为')(',第4种情况为'()'。答案就是合法的括号序列。

设 $f[i][j]$ 表示前 $i$ 个位置,多余的'('数目为 $2j$ 的最小代价。那么考虑这4种情况即可。注意第3、4种情况可能出现多次,因此是完全背包。

转移之间需要加上回路的代价 $T·2j$ 。

最后加上从0到n+1的代价 $(n+1)T$ 即为答案。

时间复杂度 $O(n^2)$

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int f[3010][3010];
int main()
{
int n , m , i , j , u , v , d , e;
scanf("%d%d" , &n , &m);
memset(f , 0x3f , sizeof(f)) , f[0][0] = 0;
for(i = 1 ; i <= n ; i ++ )
{
scanf("%d%d%d%d" , &u , &v , &d , &e);
for(j = 1 ; j <= n ; j ++ ) f[i - 1][j] += j * m * 2;
for(j = 1 ; j <= n ; j ++ ) f[i][j] = min(f[i][j] , f[i - 1][j - 1] + d + v);
for(j = 0 ; j < n ; j ++ ) f[i][j] = min(f[i][j] , f[i - 1][j + 1] + u + e);
for(j = 1 ; j <= n ; j ++ ) f[i][j] = min(f[i][j] , f[i - 1][j] + d + e);
for(j = 0 ; j <= n ; j ++ ) f[i][j] = min(f[i][j] , f[i - 1][j] + u + v);
for(j = 1 ; j <= n ; j ++ ) f[i][j] = min(f[i][j] , f[i][j - 1] + d + v);
for(j = n - 1 ; ~j ; j -- ) f[i][j] = min(f[i][j] , f[i][j + 1] + u + e);
}
printf("%d\n" , f[n][0] + (n + 1) * m);
return 0;
}

【bzoj4244】邮戳拉力赛 背包dp的更多相关文章

  1. [BZOJ4244]邮戳拉力赛

    Description IOI铁路是由N+2个站点构成的直线线路.这条线路的车站从某一端的车站开始顺次标号为0...N+1. 这条路线上行驶的电车分为上行电车和下行电车两种,上行电车沿编号增大方向行驶 ...

  2. 【BZOJ4244】邮戳拉力赛 DP

    [BZOJ4244]邮戳拉力赛 Description IOI铁路是由N+2个站点构成的直线线路.这条线路的车站从某一端的车站开始顺次标号为0...N+1. 这条路线上行驶的电车分为上行电车和下行电车 ...

  3. 背包dp整理

    01背包 动态规划是一种高效的算法.在数学和计算机科学中,是一种将复杂问题的分成多个简单的小问题思想 ---- 分而治之.因此我们使用动态规划的时候,原问题必须是重叠的子问题.运用动态规划设计的算法比 ...

  4. hdu 5534 Partial Tree 背包DP

    Partial Tree Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid= ...

  5. HDU 5501 The Highest Mark 背包dp

    The Highest Mark Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?p ...

  6. Codeforces Codeforces Round #319 (Div. 2) B. Modulo Sum 背包dp

    B. Modulo Sum Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/577/problem/ ...

  7. noj [1479] How many (01背包||DP||DFS)

    http://ac.nbutoj.com/Problem/view.xhtml?id=1479 [1479] How many 时间限制: 1000 ms 内存限制: 65535 K 问题描述 The ...

  8. HDU 1011 树形背包(DP) Starship Troopers

    题目链接:  HDU 1011 树形背包(DP) Starship Troopers 题意:  地图中有一些房间, 每个房间有一定的bugs和得到brains的可能性值, 一个人带领m支军队从入口(房 ...

  9. BZOJ 1004: [HNOI2008]Cards( 置换群 + burnside引理 + 背包dp + 乘法逆元 )

    题意保证了是一个置换群. 根据burnside引理, 答案为Σc(f) / (M+1). c(f)表示置换f的不动点数, 而题目限制了颜色的数量, 所以还得满足题目, 用背包dp来计算.dp(x,i, ...

随机推荐

  1. 20155334 实验二 Java面向对象程序设计

    实验二 Java面向对象程序设计 实验内容 初步掌握单元测试和TDD 理解并掌握面向对象三要素:封装.继承.多态 初步掌握UML建模 熟悉S.O.L.I.D原则 了解设计模式 实验要求 完成实验.撰写 ...

  2. jdk和tomcat版本对应

    见tomcat的官网说明:tomcat.apache.org/whichversion.html Apache Tomcat ®是一个开源软件实现了Java Servlet和JavaServer Pa ...

  3. 人脸识别引擎SeetaFaceEngine简介及在windows7 vs2013下的编译

    SeetaFaceEngine是开源的C++人脸识别引擎,无需第三方库,它是由中科院计算所山世光老师团队研发.它的License是BSD-2. SeetaFaceEngine库包括三个模块:人脸检测( ...

  4. 深入解析QML引擎, 第1部分:QML文件加载

    译者注:这个解析QML引擎的文章共4篇,分析非常透彻,在国内几乎没有找到类似的分析,为了便于国内的QT/QML爱好者和工作者也能更好的学习和理解QML引擎,故将这个系列的4篇文章翻译过来.翻译并不是完 ...

  5. Towards Accurate Multi-person Pose Estimation in the Wild 论文阅读

    论文概况 论文名:Towards Accurate Multi-person Pose Estimation in the Wild 作者(第一作者)及单位:George Papandreou, 谷歌 ...

  6. python程序设计——面向对象程序设计:方法

    类中定义的方法分为四类:公有方法,私有方法,静态方法,类方法 公有方法.私有方法都属于对象,私有方法的名字以"__"开始 每个对象都有自己的公有方法和私有方法,这两类方法可以访问属 ...

  7. Windows操作系统C盘占用空间过多

    Windows操作系统C盘占用空间过多 大部分的windows电脑用户在长时间使用PC时都会遇到一个问题,就是C盘占用的空间会越来越多,乃至占满整个C盘. 后来在百度了一波,发现各种方法都试过了,也不 ...

  8. 在Office 365 的如何给管理员赋予查看所有人邮箱的权限的Powershell

    连接至Office365 的Powershell Get-MsolUser -UserPrincipalName admin@***.partner.onmschina.cn //Get-MsolUs ...

  9. MobSF 框架安装使用部署

    1.MobSF 简介 MobSF是Mobile Security Framework的缩写,这是一款智能化的开源移动应用(Android.IOS.Windows)测试框架,可以对应用进行动态.静态分析 ...

  10. PIGCMS 关闭聊天机器人(小黄鸡)

    无脑操作举例 1.找到 WeixinAction.class.php 文件,路径: 你的版本\PigCms\Lib\Action\Home 2.查询 function chat ,在 chat() 函 ...