AtCoder Regular Contest 083 D: Restoring Road Network
题意
有一张无向带权连通图(点数<=300),给出任意两点i,j之间的最短路长度dis[i][j].问是否存在一张这样的无向图.如果不存在输出-1.如果存在输出所有这样的无向图中边权和最小的一张的边权和.
分析
如果存在i,j,k(i,j,k互不相同)使得dis[i][k]+dis[k][j]<dis[i][j]那么一定不存在.否则一定存在.
对于i,j(i!=j),如果存在第三个点k使得dis[i][k]+dis[k][j]=dis[i][j],那么为了总的边权和最小,i和j必然没有连边,i和j之间的最短路径是从i到k的最短路径和k到j的最短路径连接起来得到的.
如果不存在这样的k,i和j之间必然存在一条边权为dis[i][j]的边.
O(n^3)完事了.
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn=305;
int dis[maxn][maxn];
bool notneed[maxn][maxn];
int main(){
int n;scanf("%d",&n);
for(int i=1;i<=n;++i){
for(int j=1;j<=n;++j){
scanf("%d",&dis[i][j]);
}
}
bool flag=true;
for(int i=1;i<=n;++i){
for(int j=1;j<=n;++j){
for(int k=1;k<=n;++k){
if(i!=j&&j!=k&&k!=i){
if(dis[i][j]+dis[j][k]<dis[i][k])flag=false;
if(dis[i][j]+dis[j][k]==dis[i][k])notneed[i][k]=true;
}
}
}
}
if(!flag){
printf("-1\n");
}else{
long long ans=0;
for(int i=1;i<=n;++i){
for(int j=i+1;j<=n;++j){
if(!notneed[i][j])ans+=dis[i][j];
}
}
printf("%lld\n",ans);
}
return 0;
}
AtCoder Regular Contest 083 D: Restoring Road Network的更多相关文章
- AtCoder Regular Contest 083
C - Sugar Water Time limit : 3sec / Memory limit : 256MB Score : 300 points Problem Statement Snuke ...
- AtCoder Regular Contest 083 E - Bichrome Tree
题目传送门:https://arc083.contest.atcoder.jp/tasks/arc083_c 题目大意: 给定一棵树,你可以给这些点任意黑白染色,并且赋上权值,现给定一个序列\(X_i ...
- AtCoder Regular Contest 083 C: Sugar Water
题意 给你一个空杯子,有4种操作: 操作1 加100a克的水 操作2 加100b克的水 操作3 加c克的糖 操作4 加d克的糖 糖的质量不能超过水的质量e/100 糖和水的总质量不能超过f 糖的质量不 ...
- [AtCoder Regular Contest 083] Bichrome Tree
树形DP. 每个点有两个属性:黑色点的权值和,白色点权值和,一个知道另一个也一定知道. 因为只要子树的和它相等的点得权值和不超过x[u],u点的权值总能将其补齐. 设计状态f[u]表示以u为根的子树, ...
- AtCoder Regular Contest 061
AtCoder Regular Contest 061 C.Many Formulas 题意 给长度不超过\(10\)且由\(0\)到\(9\)数字组成的串S. 可以在两数字间放\(+\)号. 求所有 ...
- AtCoder Regular Contest 094 (ARC094) CDE题解
原文链接http://www.cnblogs.com/zhouzhendong/p/8735114.html $AtCoder\ Regular\ Contest\ 094(ARC094)\ CDE$ ...
- AtCoder Regular Contest 092
AtCoder Regular Contest 092 C - 2D Plane 2N Points 题意: 二维平面上给了\(2N\)个点,其中\(N\)个是\(A\)类点,\(N\)个是\(B\) ...
- AtCoder Regular Contest 093
AtCoder Regular Contest 093 C - Traveling Plan 题意: 给定n个点,求出删去i号点时,按顺序从起点到一号点走到n号点最后回到起点所走的路程是多少. \(n ...
- AtCoder Regular Contest 094
AtCoder Regular Contest 094 C - Same Integers 题意: 给定\(a,b,c\)三个数,可以进行两个操作:1.把一个数+2:2.把任意两个数+1.求最少需要几 ...
随机推荐
- 20155331 《信息安全技术概论》实验二 Windows口令破解
20155331 <信息安全技术概论>实验二 Windows口令破解 [实验目的] 了解Windows口令破解原理 对信息安全有直观感性认识 能够运用工具实现口令破解 [实验原理] 口令破 ...
- 【LG4609】[FJOI2016]建筑师
[LG4609][FJOI2016]建筑师 题面 洛谷 题解 (图片来源于网络) 我们将每个柱子和他右边的省略号看作一个集合 则图中共有\(a+b-2\)个集合 而原来的元素中有\(n-1\)个(除去 ...
- Arduino语言
Arduino语言 Arduino语言是建立在C/C++基础上的,其实也就是基础的C语言,Arduino语言只不过把AVR单片机(微控制器)相关的一些参数设置都函数化,不用我们去了解他的底层,让我们不 ...
- Selenium2+python自动化-iframe
前言 本篇详细讲解iframe的相关切换操作. 一.frame和iframe区别 Frame与Iframe两者可以实现的功能基本相同,不过Iframe比Frame具有更多的灵活性. frame是整个页 ...
- Jmeter接口测试(一) Jmeter简介
一.Jmeter介绍 (一)Jmeter简介 Apache JMeter 是 Apache 组织的开放源代码项目,是一个纯 Java 桌面应用,用于压力测试和性能测试.它最初被设计用于 Web 应用测 ...
- IDEA 配置Junit4
Junit4 主要用来执行java程序的单元测试: 1 安装junit4插件 因为我安装过了,没有安装的再输入框搜索,然后安装就行 2 选择默认使用Junit4 3 红框中的test去掉,变为“$en ...
- AtCoder Grand Contest 026 D - Histogram Coloring
一列中有两个连续的元素,那么下一列只能选择选择正好相反的填色方案(因为连续的地方填色方案已经确定,其他地方也就确定了) 我们现将高度进行离散化到Has数组中,然后定义dp数组 dp[i][j] 表示前 ...
- java之接口开发-初级篇-webservice协议
webservice协议 客户端: 客户端生成使用soapUI生成 外部提供webservice地址,地址后加?wsdl.选择好目录然后生成,放到项目中实现 服务端: web.xml平级目录下创建se ...
- Educational Codeforces Round 63 D. Beautiful Array
D. Beautiful Array time limit per test 2 seconds memory limit per test 256 megabytes input standard ...
- Markdown分级语法手册
目录 前言(可以不看) 基本语法(18) 1. 标题:# 2. 无序列表:- 3. 有序列表:1. 4. 斜体:* 5. 粗体:** 6. 加粗斜体:*** 7. 删除线:~~ 8. 分隔线:--- ...