题意

有一张无向带权连通图(点数<=300),给出任意两点i,j之间的最短路长度dis[i][j].问是否存在一张这样的无向图.如果不存在输出-1.如果存在输出所有这样的无向图中边权和最小的一张的边权和.

分析

如果存在i,j,k(i,j,k互不相同)使得dis[i][k]+dis[k][j]<dis[i][j]那么一定不存在.否则一定存在.

对于i,j(i!=j),如果存在第三个点k使得dis[i][k]+dis[k][j]=dis[i][j],那么为了总的边权和最小,i和j必然没有连边,i和j之间的最短路径是从i到k的最短路径和k到j的最短路径连接起来得到的.

如果不存在这样的k,i和j之间必然存在一条边权为dis[i][j]的边.

O(n^3)完事了.

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn=305;
int dis[maxn][maxn];
bool notneed[maxn][maxn];
int main(){
int n;scanf("%d",&n);
for(int i=1;i<=n;++i){
for(int j=1;j<=n;++j){
scanf("%d",&dis[i][j]);
}
}
bool flag=true;
for(int i=1;i<=n;++i){
for(int j=1;j<=n;++j){
for(int k=1;k<=n;++k){
if(i!=j&&j!=k&&k!=i){
if(dis[i][j]+dis[j][k]<dis[i][k])flag=false;
if(dis[i][j]+dis[j][k]==dis[i][k])notneed[i][k]=true;
}
}
}
}
if(!flag){
printf("-1\n");
}else{
long long ans=0;
for(int i=1;i<=n;++i){
for(int j=i+1;j<=n;++j){
if(!notneed[i][j])ans+=dis[i][j];
}
}
printf("%lld\n",ans);
}
return 0;
}

AtCoder Regular Contest 083 D: Restoring Road Network的更多相关文章

  1. AtCoder Regular Contest 083

    C - Sugar Water Time limit : 3sec / Memory limit : 256MB Score : 300 points Problem Statement Snuke ...

  2. AtCoder Regular Contest 083 E - Bichrome Tree

    题目传送门:https://arc083.contest.atcoder.jp/tasks/arc083_c 题目大意: 给定一棵树,你可以给这些点任意黑白染色,并且赋上权值,现给定一个序列\(X_i ...

  3. AtCoder Regular Contest 083 C: Sugar Water

    题意 给你一个空杯子,有4种操作: 操作1 加100a克的水 操作2 加100b克的水 操作3 加c克的糖 操作4 加d克的糖 糖的质量不能超过水的质量e/100 糖和水的总质量不能超过f 糖的质量不 ...

  4. [AtCoder Regular Contest 083] Bichrome Tree

    树形DP. 每个点有两个属性:黑色点的权值和,白色点权值和,一个知道另一个也一定知道. 因为只要子树的和它相等的点得权值和不超过x[u],u点的权值总能将其补齐. 设计状态f[u]表示以u为根的子树, ...

  5. AtCoder Regular Contest 061

    AtCoder Regular Contest 061 C.Many Formulas 题意 给长度不超过\(10\)且由\(0\)到\(9\)数字组成的串S. 可以在两数字间放\(+\)号. 求所有 ...

  6. AtCoder Regular Contest 094 (ARC094) CDE题解

    原文链接http://www.cnblogs.com/zhouzhendong/p/8735114.html $AtCoder\ Regular\ Contest\ 094(ARC094)\ CDE$ ...

  7. AtCoder Regular Contest 092

    AtCoder Regular Contest 092 C - 2D Plane 2N Points 题意: 二维平面上给了\(2N\)个点,其中\(N\)个是\(A\)类点,\(N\)个是\(B\) ...

  8. AtCoder Regular Contest 093

    AtCoder Regular Contest 093 C - Traveling Plan 题意: 给定n个点,求出删去i号点时,按顺序从起点到一号点走到n号点最后回到起点所走的路程是多少. \(n ...

  9. AtCoder Regular Contest 094

    AtCoder Regular Contest 094 C - Same Integers 题意: 给定\(a,b,c\)三个数,可以进行两个操作:1.把一个数+2:2.把任意两个数+1.求最少需要几 ...

随机推荐

  1. 20155330 2016-2017-2 《Java程序设计》第十周学习总结

    20155330 2016-2017-2 <Java程序设计>第十周学习总结 教材学习内容总结 学习目标 了解计算机网络基础 掌握Java Socket编程 理解混合密码系统 掌握Java ...

  2. 20145226夏艺华 《Java程序设计》第7&8周学习总结、实验一

    [实验一]http://www.cnblogs.com/bestixyh/p/6358734.html [第7周]http://www.cnblogs.com/bestixyh/p/6380475.h ...

  3. MySql访客连接设置

    步骤: 1 . 打开命令窗口,切换到mysql安装目录 可以在控制台目录切换,也可以打开所在安装目录后再打开控制台 2 . 执行命令:mysql -u root -p 3 . 无法访问的话,查看防火墙 ...

  4. 【转载】DXUT11框架浅析(4)--调试相关

    原文:DXUT11框架浅析(4)--调试相关 DXUT11框架浅析(4)--调试相关 1. D3D8/9和D3D10/11的调试区别 只要安装了DXSDK,有个调试工具DirectX ControlP ...

  5. python 内置模块(hash lib)

    用于加密相关的操作,代替了md5模块和sha模块,主要提供 SHA1, SHA224, SHA256, SHA384, SHA512 ,MD5 算法 MD5 import hashlib hash=h ...

  6. java阻塞队列之LinkedBlockingQueue

    LinkedBlockingQueue是BlockingQueue中的其中一个,其实现方式为单向链表,下面看其具体实现.(均为JDK8) 一.构造函数 在LinkedBlockingQueue中有三个 ...

  7. 五、利用EnterpriseFrameWork快速开发基于WebServices的接口

    回<[开源]EnterpriseFrameWork框架系列文章索引> EnterpriseFrameWork框架实例源代码下载: 实例下载 前面几章已完成EnterpriseFrameWo ...

  8. PHP序列化serialize()和反序列化unserialize()

    所谓的序列化,就是把保存在内存中的各种对象状态或属性保存起来,在需要时可以还原出来. serialize() 可处理除了 resource 之外的任何类型返回字符串,此字符串包含了表示 value 的 ...

  9. eclipse查看源代码问题

    最近分析源代码时,eclipse总是出错,显示org.eclipse.core.runtime.CoreException,解决方法:在builderpath点击 add external jars, ...

  10. 解决xampp启动mysql失败

    进入到注册表内 命令:regedit 进入到路径:计算机\HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\MySQL 修改路径为:" ...