题意

有一张无向带权连通图(点数<=300),给出任意两点i,j之间的最短路长度dis[i][j].问是否存在一张这样的无向图.如果不存在输出-1.如果存在输出所有这样的无向图中边权和最小的一张的边权和.

分析

如果存在i,j,k(i,j,k互不相同)使得dis[i][k]+dis[k][j]<dis[i][j]那么一定不存在.否则一定存在.

对于i,j(i!=j),如果存在第三个点k使得dis[i][k]+dis[k][j]=dis[i][j],那么为了总的边权和最小,i和j必然没有连边,i和j之间的最短路径是从i到k的最短路径和k到j的最短路径连接起来得到的.

如果不存在这样的k,i和j之间必然存在一条边权为dis[i][j]的边.

O(n^3)完事了.

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn=305;
int dis[maxn][maxn];
bool notneed[maxn][maxn];
int main(){
int n;scanf("%d",&n);
for(int i=1;i<=n;++i){
for(int j=1;j<=n;++j){
scanf("%d",&dis[i][j]);
}
}
bool flag=true;
for(int i=1;i<=n;++i){
for(int j=1;j<=n;++j){
for(int k=1;k<=n;++k){
if(i!=j&&j!=k&&k!=i){
if(dis[i][j]+dis[j][k]<dis[i][k])flag=false;
if(dis[i][j]+dis[j][k]==dis[i][k])notneed[i][k]=true;
}
}
}
}
if(!flag){
printf("-1\n");
}else{
long long ans=0;
for(int i=1;i<=n;++i){
for(int j=i+1;j<=n;++j){
if(!notneed[i][j])ans+=dis[i][j];
}
}
printf("%lld\n",ans);
}
return 0;
}

AtCoder Regular Contest 083 D: Restoring Road Network的更多相关文章

  1. AtCoder Regular Contest 083

    C - Sugar Water Time limit : 3sec / Memory limit : 256MB Score : 300 points Problem Statement Snuke ...

  2. AtCoder Regular Contest 083 E - Bichrome Tree

    题目传送门:https://arc083.contest.atcoder.jp/tasks/arc083_c 题目大意: 给定一棵树,你可以给这些点任意黑白染色,并且赋上权值,现给定一个序列\(X_i ...

  3. AtCoder Regular Contest 083 C: Sugar Water

    题意 给你一个空杯子,有4种操作: 操作1 加100a克的水 操作2 加100b克的水 操作3 加c克的糖 操作4 加d克的糖 糖的质量不能超过水的质量e/100 糖和水的总质量不能超过f 糖的质量不 ...

  4. [AtCoder Regular Contest 083] Bichrome Tree

    树形DP. 每个点有两个属性:黑色点的权值和,白色点权值和,一个知道另一个也一定知道. 因为只要子树的和它相等的点得权值和不超过x[u],u点的权值总能将其补齐. 设计状态f[u]表示以u为根的子树, ...

  5. AtCoder Regular Contest 061

    AtCoder Regular Contest 061 C.Many Formulas 题意 给长度不超过\(10\)且由\(0\)到\(9\)数字组成的串S. 可以在两数字间放\(+\)号. 求所有 ...

  6. AtCoder Regular Contest 094 (ARC094) CDE题解

    原文链接http://www.cnblogs.com/zhouzhendong/p/8735114.html $AtCoder\ Regular\ Contest\ 094(ARC094)\ CDE$ ...

  7. AtCoder Regular Contest 092

    AtCoder Regular Contest 092 C - 2D Plane 2N Points 题意: 二维平面上给了\(2N\)个点,其中\(N\)个是\(A\)类点,\(N\)个是\(B\) ...

  8. AtCoder Regular Contest 093

    AtCoder Regular Contest 093 C - Traveling Plan 题意: 给定n个点,求出删去i号点时,按顺序从起点到一号点走到n号点最后回到起点所走的路程是多少. \(n ...

  9. AtCoder Regular Contest 094

    AtCoder Regular Contest 094 C - Same Integers 题意: 给定\(a,b,c\)三个数,可以进行两个操作:1.把一个数+2:2.把任意两个数+1.求最少需要几 ...

随机推荐

  1. CF 1065 E. Side Transmutations

    E. Side Transmutations http://codeforces.com/contest/1065/problem/E 题意: 长度为n的字符串,字符集为A,问多少不同的字符串.两个字 ...

  2. cdh中hdfs非ha环境迁移Namenode与secondaryNamenode,从uc机器到阿里;

    1.停掉外部接入服务: 2 NameNode Metadata备份: 2.1 备份fsimage数据,(该操作适用HA和非HA的NameNode),使用如下命令进行备份: [root@cdh01 df ...

  3. 一个奇怪的JS函数

    今天在分析一个jQuery插件源码的时候,发现了一个奇怪的函数. 这个函数的目的是为数字补零,如传入7,输出07,传入12输出12.由于是对时间补零,只截取后两位. // add leading ze ...

  4. bzoj1901&zoj2112&cogs257 Dynamic Rankings(动态排名系统)

    bzoj1901&zoj2112&cogs257 Dynamic Rankings(动态排名系统) cogs zoj bzoj-权限 题解 bzoj和zoj都是骗访问量的233,我没有 ...

  5. MySQL授权root

    1. 改表法. 可能是你的帐号不允许从远程登陆,只能在localhost.这个时候只要在localhost的那台电脑,登入mysql后,更改 "mysql" 数据库里的 " ...

  6. Intellif IDEA 自带数据库管理工具 DataBase 配置

    第一步: 第二步: 第三步: jdbc:oracle:thin:@192.168.19.39:1521:orcl

  7. 接口自动化·分享·第二篇·你必须了解的HttpRequest和HttpResponse

    完成一个接口调用其实就是完成了一次http请求,所以你必须要清楚一个http请求的组成. 一次完整的请求包含:请求+响应. 一.HttpRequest请求对象 要调用一个接口,首先要准备的是一个请求对 ...

  8. [转]git学习------>git-rev-parse命令初识

    git学习------>git-rev-parse命令初识 2017年06月13日 10:04:13 阅读数:2172 一.准备工作 第一步:在d盘git test目录下,新建工作区根目录dem ...

  9. Animator & Timeline

    using System.Collections; using System.Collections.Generic; using UnityEngine; using UnityEngine.Pla ...

  10. Spring Cloud(一):服务治理技术概览【Finchley 版】

    Spring Cloud(一):服务治理技术概览[Finchley 版]  发表于 2018-04-14 |  更新于 2018-05-07 |  Spring Cloud Netflix 是 Spr ...