题目描述

«问题描述:

给定有向图G=(V,E)。设P 是G 的一个简单路(顶点不相交)的集合。如果V 中每个顶点恰好在P 的一条路上,则称P是G 的一个路径覆盖。P 中路径可以从V 的任何一个顶点开始,长度也是任意的,特别地,可以为0。G 的最小路径覆盖是G 的所含路径条数最少的路径覆盖。设计一个有效算法求一个有向无环图G 的最小路径覆盖。提示:设V={1,2,.... ,n},构造网络G1=(V1,E1)如下:

每条边的容量均为1。求网络G1的( 0 x , 0 y )最大流。

«编程任务:

对于给定的给定有向无环图G,编程找出G的一个最小路径覆盖。

输入输出格式

输入格式:

件第1 行有2个正整数n和m。n是给定有向无环图G 的顶点数,m是G 的边数。接下来的m行,每行有2 个正整数i和j,表示一条有向边(i,j)。

输出格式:

从第1 行开始,每行输出一条路径。文件的最后一行是最少路径数。

输入输出样例

输入样例#1:

11 12
1 2
1 3
1 4
2 5
3 6
4 7
5 8
6 9
7 10
8 11
9 11
10 11
输出样例#1:

1 4 7 10 11
2 5 8
3 6 9
3

说明

1<=n<=150,1<=m<=6000

由@zhouyonglong提供SPJ

Solution:

先简单的解释一下最小路径覆盖:大致就是在一个有向无环图中,用最少多少条简单路径能将所有的点覆盖(简单路径简单来说就是一条路径不能和其他路径有重复的点,当然也可以认为单个点是一条简单路径)。

仔细思考,容易发现有些类似于二分图匹配的问题,异曲同工。

算法:把原图的每个点V拆成Vx和Vy两个点,如果有一条有向边A->B,那么就加边Ax−>By。这样就得到了一个二分图。那么最小路径覆盖=原图的结点数-新图的最大匹配数。

证明:一开始每个点都是独立的为一条路径,总共有n条不相交路径。我们每次在二分图里找一条匹配边就相当于把两条路径合成了一条路径,也就相当于路径数减少了1。所以找到了几条匹配边,路径数就减少了多少。所以有最小路径覆盖=原图的结点数-新图的最大匹配数。

因为路径之间不能有公共点,所以加的边之间也不能有公共点,这就是匹配的定义。

方法一:二分图匹配。综合上述所说的,我们可以直接建图,然后跑匈牙利算法,输出的话只需将所匹配的点依次输出就ok了。

代码(copy一份):

 #include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int maxn = ;
const int maxm = ;
struct Edge
{
int v;
Edge *next;
}E[maxm], *H[maxn], *edges;
int res[maxn];
int vis[maxn];
void addedges(int u, int v)
{
edges->v = v;
edges->next = H[u];
H[u] = edges++;
}
void init()
{
edges = E;
memset(H, , sizeof H);
memset(res, -, sizeof res);
}
bool find(int u)
{
for(Edge *e = H[u]; e; e = e->next) if(!vis[e->v]) {
int v = e->v;
vis[v] = ;
if(res[v] == - || find(res[v])) {
res[v] = u;
return true;
}
}
return false;
}
int n, m;
vector<int> ans;
int to[maxn];
void work()
{
int u, v;
for(int i = ; i <= m; i++) {
scanf("%d%d", &u, &v);
addedges(u, v);
}
int result = ;
for(int i = ; i <= n; i++) {
memset(vis, , sizeof vis);
if(find(i)) result++;
}
memset(to, , sizeof to);
for(int i = ; i <= n; i++) if(res[i] != -) to[res[i]] = i;
for(int i = ; i <= n; i++) if(res[i] == -) {
ans.clear();
int u = i;
ans.push_back(u);
while(to[u]) {
u = to[u];
ans.push_back(u);
}
for(int j = ; j < ans.size(); j++) printf("%d%c", ans[j], j == ans.size() - ? '\n' : ' ');
}
printf("%d\n", n - result);
}
int main()
{
scanf("%d%d", &n, &m);
init();
work();
return ;
}

方法二:网络最大流。这里的做法和二分图匹配用最大流的做法是一样的。附加炒鸡源S和炒鸡汇T,然后建图(边权为1),最后跑最大流,输出时方法很多,我选择的是从汇点按残余流量的有无来往前找一条路径并递归输出。

代码(手打Dinic):

 #include<bits/stdc++.h>
#define il inline
using namespace std;
const int N=,inf=;
int n,m,s,t=,h[N],dis[N],cnt=,fa[N];
struct edge{
int to,net,v;
}e[];
il void add(int u,int v,int w)
{
e[++cnt].to=v,e[cnt].net=h[u],e[cnt].v=w,h[u]=cnt;
e[++cnt].to=u,e[cnt].net=h[v],e[cnt].v=,h[v]=cnt;
}
queue<int>q;
il bool bfs()
{
memset(dis,-,sizeof(dis));
q.push(s),dis[s]=;
while(!q.empty())
{
int u=q.front();q.pop();
for(int i=h[u];i;i=e[i].net)
if(dis[e[i].to]==-&&e[i].v>)dis[e[i].to]=dis[u]+,q.push(e[i].to);
}
return dis[t]!=-;
}
il int dfs(int u,int op)
{
if(u==t)return op;
int flow=,used=;
for(int i=h[u];i;i=e[i].net)
{
int v=e[i].to;
if(dis[v]==dis[u]+&&e[i].v)
{
used=dfs(v,min(op,e[i].v));
if(!used)continue;
flow+=used,op-=used;
e[i].v-=used,e[i^].v+=used;
fa[u]=v;
if(!op)break;
}
}
if(!flow)dis[u]=-;
return flow;
}
il void print(int x)
{
if(x<=s)return;
printf("%d ",x);
for(int i=h[x];i;i=e[i].net)
if(!e[i].v&&e[i].to<=n*)print(e[i].to-n);
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)fa[i]=i;
for(int i=;i<=n;i++)add(s,i,),add(i+n,t,);
int u,v;
for(int i=;i<=m;i++)
{
scanf("%d%d",&u,&v);
add(u,v+n,);
}
int ans=n;
while(bfs())ans-=dfs(s,inf);
for(int i=h[t];i;i=e[i].net)
{
if(e[i].v)continue;
print(e[i].to-n),printf("\n");
}
printf("%d",ans);
return ;
}

P2764 最小路径覆盖问题(网络流24题之一)的更多相关文章

  1. 洛谷-p2764(最小路径覆盖)(网络流24题)

    #include<iostream> #include<algorithm> #include<queue> #include<cstring> #in ...

  2. P2764 最小路径覆盖问题 网络流重温

    P2764 最小路径覆盖问题 这个题目之前第一次做的时候感觉很难,现在好多了,主要是二分图定理不太记得了,二分图定理 知道这个之后就很好写了,首先我们对每一个点进行拆点,拆完点之后就是跑最大流,求出最 ...

  3. Luogu 2764 最小路径覆盖问题 / Libre 6002 「网络流 24 题」最小路径覆盖 (网络流,最大流)

    Luogu 2764 最小路径覆盖问题 / Libre 6002 「网络流 24 题」最小路径覆盖 (网络流,最大流) Description 给定有向图G=(V,E).设P是G的一个简单路(顶点不相 ...

  4. P2764 最小路径覆盖问题

    题目描述 «问题描述: 给定有向图G=(V,E).设P 是G 的一个简单路(顶点不相交)的集合.如果V 中每个顶点恰好在P 的一条路上,则称P是G 的一个路径覆盖.P 中路径可以从V 的任何一个顶点开 ...

  5. Luogu P2764 最小路径覆盖问题(二分图匹配)

    P2764 最小路径覆盖问题 题面 题目描述 «问题描述: 给定有向图 \(G=(V,E)\) .设 \(P\) 是 \(G\) 的一个简单路(顶点不相交)的集合.如果 \(V\) 中每个顶点恰好在 ...

  6. 洛谷 P2764 最小路径覆盖问题 解题报告

    P2764 最小路径覆盖问题 问题描述: 给定有向图\(G=(V,E)\).设\(P\) 是\(G\) 的一个简单路(顶点不相交)的集合.如果\(V\) 中每个顶点恰好在\(P\) 的一条路上,则称\ ...

  7. [loj #6003]「网络流 24 题」魔术球 二分图最小路径覆盖,网络流

    #6003. 「网络流 24 题」魔术球 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:Special Judge 上传者: 匿名 提交提交记录统计讨论测试数据 ...

  8. 网络流二十四题之P2764 最小路径覆盖问题

    题目描述 给定有向图 G=(V,E)G=(V,E) .设 PP 是 GG 的一个简单路(顶点不相交)的集合.如果 VV 中每个定点恰好在PP的一条路上,则称 PP 是 GG 的一个路径覆盖.PP中路径 ...

  9. 【刷题】洛谷 P2764 最小路径覆盖问题

    题目描述 «问题描述: 给定有向图G=(V,E).设P 是G 的一个简单路(顶点不相交)的集合.如果V 中每个顶点恰好在P 的一条路上,则称P是G 的一个路径覆盖.P 中路径可以从V 的任何一个顶点开 ...

随机推荐

  1. Linux系统处理木马病毒的思路

    一.清除木马程序步骤 1.1 执行命令,每1秒刷新一次,显示整个命令路径,而不是命令的名称. [root@linux-node1 ~]# top -d -c 1.2 查找可疑进程(比较奇怪的进程名称) ...

  2. java 文件过滤

    public class TestFileio { public static void main(String[] args) { File file = new File("D:/upl ...

  3. STM8在IAR中Printf的整形长度问题

    //ld是32位的 printf("up_intval:%ld\r\n",device_set.upload_tem); //d是16位的 printf("up_intv ...

  4. python与其他语言的区别

    C 和 Python.Java.C#等 C语言: 代码编译得到 机器码 ,机器码在处理器上直接执行,每一条指令控制CPU工作 其他语言: 代码编译得到 字节码 ,虚拟机执行字节码并转换成机器码再后在处 ...

  5. 记录阿里云ECS(Centos7.4)安装mysql 8.0.X服务

    #*.rpm介绍 大多数二进制rpm包都包含在名称中倒数第二个字段中编译rpm的体系结构..rpm软件包有那么几种 *.src.rpm 源程序包,要先通过编译才能安装 *.noarch.rpm 该包适 ...

  6. 2018百度之星开发者大赛-paddlepaddle学习(二)将数据保存为recordio文件并读取

    paddlepaddle将数据保存为recordio文件并读取 因为有时候一次性将数据加载到内存中有可能太大,所以我们可以选择将数据转换成标准格式recordio文件并读取供我们的网络利用,接下来记录 ...

  7. sqlmap+tor解决ip黑名单限制

    1.安装tor浏览器(8.0.8)并配置好 旧版tor是需要Vidalia配合的,新版貌似集成了?还是怎样的,反正不需要了 2.启动tor浏览器 3.启动sqlmap python sqlmap.py ...

  8. Amazon 成功的秘訣是…

    從任何的標準去看,今日的 Amazon,都是一家超級成功的企業 — 它的線上書城和其他 B2C 電子商務業務,全球第一,年營業額超過 200 億美金.它的 AWS (Amazon Web Servic ...

  9. Python基础知识-05-数据类型总结字典

    python其他知识目录 1.一道题,选择商品的序号.程序员和用户各自面对的序号起始值 如有变量 googs = ['汽车','飞机','火箭'] 提示用户可供选择的商品: 0,汽车1,飞机2,火箭用 ...

  10. sql主表分页查询关联子表取任意一条高效方案

    有个业务场景,主表中一条数据,在子表中有多条详情数据.对数据进行展示的时候,产品希望随意拿一条子表的数据关联展示出来,用了很多方案,但是都不够好. sql查询取子表任意一条,多个字段的方案 最终找到一 ...