P2764 最小路径覆盖问题(网络流24题之一)
题目描述
«问题描述:
给定有向图G=(V,E)。设P 是G 的一个简单路(顶点不相交)的集合。如果V 中每个顶点恰好在P 的一条路上,则称P是G 的一个路径覆盖。P 中路径可以从V 的任何一个顶点开始,长度也是任意的,特别地,可以为0。G 的最小路径覆盖是G 的所含路径条数最少的路径覆盖。设计一个有效算法求一个有向无环图G 的最小路径覆盖。提示:设V={1,2,.... ,n},构造网络G1=(V1,E1)如下:
每条边的容量均为1。求网络G1的( 0 x , 0 y )最大流。
«编程任务:
对于给定的给定有向无环图G,编程找出G的一个最小路径覆盖。
输入输出格式
输入格式:
件第1 行有2个正整数n和m。n是给定有向无环图G 的顶点数,m是G 的边数。接下来的m行,每行有2 个正整数i和j,表示一条有向边(i,j)。
输出格式:
从第1 行开始,每行输出一条路径。文件的最后一行是最少路径数。
输入输出样例
11 12
1 2
1 3
1 4
2 5
3 6
4 7
5 8
6 9
7 10
8 11
9 11
10 11
1 4 7 10 11
2 5 8
3 6 9
3
说明
1<=n<=150,1<=m<=6000
由@zhouyonglong提供SPJ
Solution:
先简单的解释一下最小路径覆盖:大致就是在一个有向无环图中,用最少多少条简单路径能将所有的点覆盖(简单路径简单来说就是一条路径不能和其他路径有重复的点,当然也可以认为单个点是一条简单路径)。
仔细思考,容易发现有些类似于二分图匹配的问题,异曲同工。
算法:把原图的每个点V拆成Vx和Vy两个点,如果有一条有向边A->B,那么就加边Ax−>By。这样就得到了一个二分图。那么最小路径覆盖=原图的结点数-新图的最大匹配数。
证明:一开始每个点都是独立的为一条路径,总共有n条不相交路径。我们每次在二分图里找一条匹配边就相当于把两条路径合成了一条路径,也就相当于路径数减少了1。所以找到了几条匹配边,路径数就减少了多少。所以有最小路径覆盖=原图的结点数-新图的最大匹配数。
因为路径之间不能有公共点,所以加的边之间也不能有公共点,这就是匹配的定义。
方法一:二分图匹配。综合上述所说的,我们可以直接建图,然后跑匈牙利算法,输出的话只需将所匹配的点依次输出就ok了。
代码(copy一份):
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int maxn = ;
const int maxm = ;
struct Edge
{
int v;
Edge *next;
}E[maxm], *H[maxn], *edges;
int res[maxn];
int vis[maxn];
void addedges(int u, int v)
{
edges->v = v;
edges->next = H[u];
H[u] = edges++;
}
void init()
{
edges = E;
memset(H, , sizeof H);
memset(res, -, sizeof res);
}
bool find(int u)
{
for(Edge *e = H[u]; e; e = e->next) if(!vis[e->v]) {
int v = e->v;
vis[v] = ;
if(res[v] == - || find(res[v])) {
res[v] = u;
return true;
}
}
return false;
}
int n, m;
vector<int> ans;
int to[maxn];
void work()
{
int u, v;
for(int i = ; i <= m; i++) {
scanf("%d%d", &u, &v);
addedges(u, v);
}
int result = ;
for(int i = ; i <= n; i++) {
memset(vis, , sizeof vis);
if(find(i)) result++;
}
memset(to, , sizeof to);
for(int i = ; i <= n; i++) if(res[i] != -) to[res[i]] = i;
for(int i = ; i <= n; i++) if(res[i] == -) {
ans.clear();
int u = i;
ans.push_back(u);
while(to[u]) {
u = to[u];
ans.push_back(u);
}
for(int j = ; j < ans.size(); j++) printf("%d%c", ans[j], j == ans.size() - ? '\n' : ' ');
}
printf("%d\n", n - result);
}
int main()
{
scanf("%d%d", &n, &m);
init();
work();
return ;
}
方法二:网络最大流。这里的做法和二分图匹配用最大流的做法是一样的。附加炒鸡源S和炒鸡汇T,然后建图(边权为1),最后跑最大流,输出时方法很多,我选择的是从汇点按残余流量的有无来往前找一条路径并递归输出。
代码(手打Dinic):
#include<bits/stdc++.h>
#define il inline
using namespace std;
const int N=,inf=;
int n,m,s,t=,h[N],dis[N],cnt=,fa[N];
struct edge{
int to,net,v;
}e[];
il void add(int u,int v,int w)
{
e[++cnt].to=v,e[cnt].net=h[u],e[cnt].v=w,h[u]=cnt;
e[++cnt].to=u,e[cnt].net=h[v],e[cnt].v=,h[v]=cnt;
}
queue<int>q;
il bool bfs()
{
memset(dis,-,sizeof(dis));
q.push(s),dis[s]=;
while(!q.empty())
{
int u=q.front();q.pop();
for(int i=h[u];i;i=e[i].net)
if(dis[e[i].to]==-&&e[i].v>)dis[e[i].to]=dis[u]+,q.push(e[i].to);
}
return dis[t]!=-;
}
il int dfs(int u,int op)
{
if(u==t)return op;
int flow=,used=;
for(int i=h[u];i;i=e[i].net)
{
int v=e[i].to;
if(dis[v]==dis[u]+&&e[i].v)
{
used=dfs(v,min(op,e[i].v));
if(!used)continue;
flow+=used,op-=used;
e[i].v-=used,e[i^].v+=used;
fa[u]=v;
if(!op)break;
}
}
if(!flow)dis[u]=-;
return flow;
}
il void print(int x)
{
if(x<=s)return;
printf("%d ",x);
for(int i=h[x];i;i=e[i].net)
if(!e[i].v&&e[i].to<=n*)print(e[i].to-n);
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)fa[i]=i;
for(int i=;i<=n;i++)add(s,i,),add(i+n,t,);
int u,v;
for(int i=;i<=m;i++)
{
scanf("%d%d",&u,&v);
add(u,v+n,);
}
int ans=n;
while(bfs())ans-=dfs(s,inf);
for(int i=h[t];i;i=e[i].net)
{
if(e[i].v)continue;
print(e[i].to-n),printf("\n");
}
printf("%d",ans);
return ;
}
P2764 最小路径覆盖问题(网络流24题之一)的更多相关文章
- 洛谷-p2764(最小路径覆盖)(网络流24题)
#include<iostream> #include<algorithm> #include<queue> #include<cstring> #in ...
- P2764 最小路径覆盖问题 网络流重温
P2764 最小路径覆盖问题 这个题目之前第一次做的时候感觉很难,现在好多了,主要是二分图定理不太记得了,二分图定理 知道这个之后就很好写了,首先我们对每一个点进行拆点,拆完点之后就是跑最大流,求出最 ...
- Luogu 2764 最小路径覆盖问题 / Libre 6002 「网络流 24 题」最小路径覆盖 (网络流,最大流)
Luogu 2764 最小路径覆盖问题 / Libre 6002 「网络流 24 题」最小路径覆盖 (网络流,最大流) Description 给定有向图G=(V,E).设P是G的一个简单路(顶点不相 ...
- P2764 最小路径覆盖问题
题目描述 «问题描述: 给定有向图G=(V,E).设P 是G 的一个简单路(顶点不相交)的集合.如果V 中每个顶点恰好在P 的一条路上,则称P是G 的一个路径覆盖.P 中路径可以从V 的任何一个顶点开 ...
- Luogu P2764 最小路径覆盖问题(二分图匹配)
P2764 最小路径覆盖问题 题面 题目描述 «问题描述: 给定有向图 \(G=(V,E)\) .设 \(P\) 是 \(G\) 的一个简单路(顶点不相交)的集合.如果 \(V\) 中每个顶点恰好在 ...
- 洛谷 P2764 最小路径覆盖问题 解题报告
P2764 最小路径覆盖问题 问题描述: 给定有向图\(G=(V,E)\).设\(P\) 是\(G\) 的一个简单路(顶点不相交)的集合.如果\(V\) 中每个顶点恰好在\(P\) 的一条路上,则称\ ...
- [loj #6003]「网络流 24 题」魔术球 二分图最小路径覆盖,网络流
#6003. 「网络流 24 题」魔术球 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:Special Judge 上传者: 匿名 提交提交记录统计讨论测试数据 ...
- 网络流二十四题之P2764 最小路径覆盖问题
题目描述 给定有向图 G=(V,E)G=(V,E) .设 PP 是 GG 的一个简单路(顶点不相交)的集合.如果 VV 中每个定点恰好在PP的一条路上,则称 PP 是 GG 的一个路径覆盖.PP中路径 ...
- 【刷题】洛谷 P2764 最小路径覆盖问题
题目描述 «问题描述: 给定有向图G=(V,E).设P 是G 的一个简单路(顶点不相交)的集合.如果V 中每个顶点恰好在P 的一条路上,则称P是G 的一个路径覆盖.P 中路径可以从V 的任何一个顶点开 ...
随机推荐
- [POI2011]MET-Meteors
题面 题解 首先我们尝试暴力,那么就对每个点二分一下即可. 我们发现单独二分复杂度太高,而且有些地方很浪费,如求前缀和等. 那么我们就想,能否将它们合并在一起二分呢? 于是就有了整体二分 整体二分即可 ...
- 【LG4841】城市规划
[LG4841]城市规划 题面 洛谷 题解 记\(t_i\)表示\(i\)个点的无向图个数,显然\(t_i=2^{C_i^2}\). 设\(f_i\)表示\(i\)个点的无向连通图个数,容斥一下,枚举 ...
- Android:制作聊天气泡点9图
步骤一:选择res下的一张图片,右击选择“Create 9-Patch File” 步骤二:确定点9图的名字,只能修改.9.png之前的信息 步骤三:在同目录下会生成刚才创建的点9图,双击打开进行编辑 ...
- PHP 中call_user_func相关函数的使用
call_user_func 官方的解释是:把第一个参数作为回调函数(callback),并且将其余的参数作为回调函数的参数. 第一个参数可以是函数名,后面的均为作为该函数使用的参数. 1. call ...
- golang 单元测试
单元测试是质量保证十分重要的一环,好的单元测试不仅能及时地发现问题,更能够方便地调试,提高生产效率.所以很多人认为写单元测试是需要额外的时间,会降低生产效率,是对单元测试最大的偏见和误解. go 语言 ...
- Maven学习(八)-----Maven依赖机制
Maven依赖机制 在 Maven 依赖机制的帮助下自动下载所有必需的依赖库,并保持版本升级. 案例分析 让我们看一个案例研究,以了解它是如何工作的.假设你想使用 Log4j 作为项目的日志.这里你要 ...
- Mysql取消SSH链接和恢复SSH链接
取消SSH链接//键入密码,链接上mysql mysql -u root -p USE MYSQL; GRANT ALL PRIVILEGES ON *.* TO 'root'@'%' IDENTIF ...
- macOS中启动Tomcat提示Cannot find ./catalina.sh
首先查看Tomcat目录下是否存在catalina.sh,如果文件不存在,文件丢失,最好的方式是重装Tomcat Tomcat官网:http://tomcat.apache.org/ 如果文件存在,那 ...
- NO.06--聊一聊“币”吧!
近期博主更新的频率明显慢来 ,一来是最近的工作比较忙碌,几个项目几乎同时要上线.二来是在思考是不是把我平时生活中的一些事情写进来博客,不只是分享分享技术. 趁着区块链.比特币火爆,博主也算是略有涉猎, ...
- Viper--方便好用的Golang 配置库
前言 本文主要是为读者介绍一个轻便好用的Golang配置库viper 正文 viper 的功能 viper 支持以下功能: 1. 支持Yaml.Json. TOML.HCL 等格式的配置 ...