实现优先队列结构主要是通过堆完成,主要有:二叉堆、d堆、左式堆、斜堆、二项堆斐波那契堆pairing 堆等。

1. 二叉堆

1.1. 定义

完全二叉树,根最小。

存储时使用层序。

1.2. 操作

(1). insert(上滤)

插入末尾 26,不断向上比较,大于26则交换位置,小于则停止。

(2). deleteMin(下滤)

提取末尾元素,放在堆顶,不断下滤:

(3). 其他操作:

都是基于insert(上滤)与deleteMin(下滤)的操作。

减小元素:减小节点的值,上滤调整堆。

增大元素:增加节点的值,下滤调整堆。

删除非顶点节点:直接删除会出问题。方法:减小元素的值到无穷小,上滤后删除。

Merge:insert one by one

2. d叉堆

2.1. 定义

完全d叉树,根最小。

存储时使用层序。

2.2. 操作:

操作跟二叉堆基本一致:insert,deleteMin,增大元素,减小元素,删除非顶元素,merge。

2.3 二叉堆与d叉堆的对比:

3. 左式堆

3.1. 定义

零路径长度:到没有两个儿子的节点最短距离
左式堆:
1.一棵二叉树
2.零路径长:左儿子≧右儿子,父节点= min{儿子} +1(这条性质导致了左式堆的严重左偏)
 
零路径长度:
 
 

3.2. 操作:

(1) merge :

原则:根值大的堆与根值小的堆的右子堆合并(根值:根位置的元素值,并非零路径长度)
 
 
具体分三种情况(设堆H1的根值小于H2)
H1只有一个节点
H1根无右孩子
H1根有右孩子
 
(1.1).H1只有一个节点,若出现不满足:零路径长:左儿子≧右儿子,交换左右孩子。
 
(1.2).H1根无右孩子,若出现不满足:零路径长:左儿子≧右儿子,交换左右孩子。
 

(1.3).H1根有右孩子

1.初始状态,H1的根6,H2的根为8,将H2合并到H1。

2.将H1构造成根无右孩子的形式:

3.将元素10, merge到H2,要首先将H2构造成根无右孩子的形式,递归,merge,若出现不满足:零路径长:左儿子≧右儿子,交换左右孩子……

——》——》——》

4.

5.

3.3. 性质分析:

insert:merge
deleteMin:delete root,merge
时间复杂度:merge与右路径长度之和成正比;最坏O(logN)
缺点:交换需判断;维护零路径长

4. 斜堆

4.1. 定义

二叉树,根最小。由此可见:
 
 
 
特点:merge无条件交换。
 
时间复杂度:最坏O(N);最好Ω(1);平均O(logN)

4.2性能比较:

定義

  • 僅有一個節點的樹為斜堆;
  • 兩個斜堆合併的結果仍為斜堆。

合併操作

斜堆合併操作的遞歸合併過程和左偏樹完全一樣。假設我們要合併 A 和 B兩個斜堆,且 A 的根節點比 B 的根節點小,我們只需要把 A 的根節點作為合併後新斜堆的根節點,並將 A 的右子樹與 B 合併。由於合併都是沿著最右路徑進行的,經過合併之後,新斜堆的最右路徑長度必然增加,這會影響下一次合併的效率。所以合併後,通過交換左右子樹,使整棵樹的最右路徑長度非常小(這是啟發規則)。然而斜堆不記錄節點的距離,在操作時,從下往上,沿著合併的路徑,在每個節點處都交換左右子樹。通過不斷交換左右子樹,斜堆把最右路徑甩向左邊了。

遞歸實現合併

  • 比較兩個堆; 設p是具有更小的root的鍵值的堆,q是另一個堆,r是合併後的結果堆。
  • 令r的root是p(具有最小root鍵值),r的右子樹為p的左子樹。
  • 令r的左子樹為p的右子樹與q合併的結果。

舉例。合併前: 

合併後 

非遞歸合併實現

  • 把每個堆的每棵(遞歸意義下)最右子樹切下來。這使得得到的每棵樹的右子樹均為空。
  • 按root的鍵值的升序排列這些樹。
  • 迭代合併具有最大root鍵值的兩棵樹:
    • 具有次大root鍵值的樹的右子樹必定為空。把其左子樹與右子樹交換。現在該樹的左子樹為空。
    • 具有最大root鍵值的樹作為具有次大root鍵值樹的左子樹。

舉例: 

5. 总结

如果是不支持所谓的合并操作union的话,普通的堆数据结构就是一种很理想的数据结构(堆排序)。 但是如果想要支持集合上的合并操作的话,最好是使用二项堆或者是斐波那契堆,普通的堆在union操作上最差的情况是O(n),但是二项堆和斐波那契堆是O(lgn)。

结构之美——优先队列基本结构(四)——二叉堆、d堆、左式堆、斜堆的更多相关文章

  1. 数据结构与算法——优先队列类的C++实现(二叉堆)

    优先队列简单介绍: 操作系统表明上看着是支持多个应用程序同一时候执行.其实是每一个时刻仅仅能有一个进程执行,操作系统会调度不同的进程去执行. 每一个进程都仅仅能执行一个固定的时间,当超过了该时间.操作 ...

  2. 树(二叉树 & 二叉搜索树 & 哈夫曼树 & 字典树)

    树:n(n>=0)个节点的有限集.有且只有一个root,子树的个数没有限制但互不相交.结点拥有的子树个数就是该结点的度(Degree).度为0的是叶结点,除根结点和叶结点,其他的是内部结点.结点 ...

  3. 自己动手实现java数据结构(六)二叉搜索树

    1.二叉搜索树介绍 前面我们已经介绍过了向量和链表.有序向量可以以二分查找的方式高效的查找特定元素,而缺点是插入删除的效率较低(需要整体移动内部元素):链表的优点在于插入,删除元素时效率较高,但由于不 ...

  4. 原生JS实现二叉搜索树(Binary Search Tree)

    1.简述 二叉搜索树树(Binary Search Tree),它或者是一棵空树,或者是具有下列性质的二叉树: 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值: 若它的右子树不空,则右子 ...

  5. HDU - 3791 建立二叉搜索树

    题意: 给定一个序列,下面又有n个序列,判断这个序列和其他序列是否为同一个二叉树(同一序列数字各不相同) 思路: 首先讲将一个序列建立成二叉搜索树,然后将其他序列也建立二叉搜索树,两个树进行前序遍历, ...

  6. 数据结构中的树(二叉树、二叉搜索树、AVL树)

    数据结构动图展示网站 树的概念 树(英语:tree)是一种抽象数据类型(ADT)或是实作这种抽象数据类型的数据结构,用来模拟具有树状结构性质的数据集合.它是由n(n>=1)个有限节点组成一个具有 ...

  7. Java实现二叉搜索树的插入、删除

    前置知识 二叉树的结构 public class TreeNode { int val; TreeNode left; TreeNode right; TreeNode() { } TreeNode( ...

  8. 手写AVL平衡二叉搜索树

    手写AVL平衡二叉搜索树 二叉搜索树的局限性 先说一下什么是二叉搜索树,二叉树每个节点只有两个节点,二叉搜索树的每个左子节点的值小于其父节点的值,每个右子节点的值大于其左子节点的值.如下图: 二叉搜索 ...

  9. 斜堆(二)之 C++的实现

    概要 上一章介绍了斜堆的基本概念,并通过C语言实现了斜堆.本章是斜堆的C++实现. 目录1. 斜堆的介绍2. 斜堆的基本操作3. 斜堆的C++实现(完整源码)4. 斜堆的C++测试程序 转载请注明出处 ...

随机推荐

  1. BZOJ5068: 友好的生物(状压 贪心)

    题意 题目链接 Sol 又是一道神仙题??.. 把绝对值拆开之后状压前面的符号?.. 下界显然,但是上界为啥是对的呀qwq.. #include<bits/stdc++.h> using ...

  2. 用java访问Oracle数据库、取得记录并输出到界面

    Class.forName(“oracle.jdbc.driver.OracleDriver”);Connection conn=DriverManager.getConnection( url , ...

  3. CentOS网卡显示为__tmpxxxxxxxx

    一台服务器做了2组端口绑定(bonding),其中一组bond总是不成功,发现少了eth0/eth5 两个网卡,后来通过ifconfig -a 发现多了两个__tmpxxx的网卡 ifconfig - ...

  4. js如何获取response header信息

    信息转自网上 普通的请求JS无法获取,只有ajax请求才能获取到. $.ajax({ type: 'HEAD', // 获取头信息,type=HEAD即可 url : window.location. ...

  5. java中字节流与字符流以及字节流多余字节问题

    1.字节流 字节流byte为单位对文件的数据进行写入与读取操作.字节的方式在复制音频图片文件时比较适用,但在对于普通文件的读写上有两大缺陷: 第一,字节流在读取中文字符时,若设定的字节数组长度刚好末尾 ...

  6. OS考研复习笔记——操作系统的定义、目标、作用和发展的主要动力

    计算机系统由硬件和软件两部分组成.操作系统(OS,Operating System)是配置在计算机硬件上的第一层软件,是对硬件系统的首次补充. 硬件:计算机物理设备,即各种处理机存储器.输入/输出设备 ...

  7. POP3、SMTP端口(SSL、TSL)

    POP3服务器地址: 110           995 支持SSLSMTP服务器地址: 25            465 或者 587 支持SSL(TSL) 465端口是SSL/TLS通讯协议的 ...

  8. 详解COM Add In的LoadBehavior及其妙用

     Office的所有COM Add In,包括用Shared Add In模板和VSTO Add In模板创建的,都会在注册表里面存储一些信息. 对于当前用户安装的Add In,以Excel为例,对应 ...

  9. ORA-28001:口令已经失效

    Oracle11G创建用户时缺省密码过期限制是180天(即6个月),如果超过180天用户密码未做修改则该用户无法登录. 查看密码的有效期设置,LIMIT字段是密码有效天数. select * from ...

  10. win环境下使用sqlmap写shell + MYSQL提权(默认就是system权限)

    今天在来一个mysql提权 (也可以说是默认system权限提的) 在被黑站点找到一个站   先教拿shell是有注入漏洞的 有可能是root权限的注入点 可以确定是有注入漏洞的 也得到了 物理路径 ...