结构之美——优先队列基本结构(四)——二叉堆、d堆、左式堆、斜堆
实现优先队列结构主要是通过堆完成,主要有:二叉堆、d堆、左式堆、斜堆、二项堆、斐波那契堆、pairing 堆等。
1. 二叉堆
1.1. 定义
完全二叉树,根最小。
存储时使用层序。
1.2. 操作
(1). insert(上滤)
插入末尾 26,不断向上比较,大于26则交换位置,小于则停止。
(2). deleteMin(下滤)
提取末尾元素,放在堆顶,不断下滤:
(3). 其他操作:
都是基于insert(上滤)与deleteMin(下滤)的操作。
减小元素:减小节点的值,上滤调整堆。
增大元素:增加节点的值,下滤调整堆。
删除非顶点节点:直接删除会出问题。方法:减小元素的值到无穷小,上滤后删除。
Merge:insert one by one
2. d叉堆
2.1. 定义
完全d叉树,根最小。
存储时使用层序。
2.2. 操作:
操作跟二叉堆基本一致:insert,deleteMin,增大元素,减小元素,删除非顶元素,merge。
2.3 二叉堆与d叉堆的对比:
3. 左式堆
3.1. 定义
3.2. 操作:
(1) merge :
(1.3).H1根有右孩子
1.初始状态,H1的根6,H2的根为8,将H2合并到H1。
2.将H1构造成根无右孩子的形式:
3.将元素10, merge到H2,要首先将H2构造成根无右孩子的形式,递归,merge,若出现不满足:零路径长:左儿子≧右儿子,交换左右孩子……
——》——》——》
4.
5.
3.3. 性质分析:
4. 斜堆
4.1. 定义
4.2性能比较:
定義
- 僅有一個節點的樹為斜堆;
- 兩個斜堆合併的結果仍為斜堆。
合併操作
斜堆合併操作的遞歸合併過程和左偏樹完全一樣。假設我們要合併 A 和 B兩個斜堆,且 A 的根節點比 B 的根節點小,我們只需要把 A 的根節點作為合併後新斜堆的根節點,並將 A 的右子樹與 B 合併。由於合併都是沿著最右路徑進行的,經過合併之後,新斜堆的最右路徑長度必然增加,這會影響下一次合併的效率。所以合併後,通過交換左右子樹,使整棵樹的最右路徑長度非常小(這是啟發規則)。然而斜堆不記錄節點的距離,在操作時,從下往上,沿著合併的路徑,在每個節點處都交換左右子樹。通過不斷交換左右子樹,斜堆把最右路徑甩向左邊了。
遞歸實現合併
- 比較兩個堆; 設p是具有更小的root的鍵值的堆,q是另一個堆,r是合併後的結果堆。
- 令r的root是p(具有最小root鍵值),r的右子樹為p的左子樹。
- 令r的左子樹為p的右子樹與q合併的結果。
舉例。合併前:
合併後
非遞歸合併實現
- 把每個堆的每棵(遞歸意義下)最右子樹切下來。這使得得到的每棵樹的右子樹均為空。
- 按root的鍵值的升序排列這些樹。
- 迭代合併具有最大root鍵值的兩棵樹:
- 具有次大root鍵值的樹的右子樹必定為空。把其左子樹與右子樹交換。現在該樹的左子樹為空。
- 具有最大root鍵值的樹作為具有次大root鍵值樹的左子樹。
舉例:
5. 总结
如果是不支持所谓的合并操作union的话,普通的堆数据结构就是一种很理想的数据结构(堆排序)。 但是如果想要支持集合上的合并操作的话,最好是使用二项堆或者是斐波那契堆,普通的堆在union操作上最差的情况是O(n),但是二项堆和斐波那契堆是O(lgn)。
结构之美——优先队列基本结构(四)——二叉堆、d堆、左式堆、斜堆的更多相关文章
- 数据结构与算法——优先队列类的C++实现(二叉堆)
优先队列简单介绍: 操作系统表明上看着是支持多个应用程序同一时候执行.其实是每一个时刻仅仅能有一个进程执行,操作系统会调度不同的进程去执行. 每一个进程都仅仅能执行一个固定的时间,当超过了该时间.操作 ...
- 树(二叉树 & 二叉搜索树 & 哈夫曼树 & 字典树)
树:n(n>=0)个节点的有限集.有且只有一个root,子树的个数没有限制但互不相交.结点拥有的子树个数就是该结点的度(Degree).度为0的是叶结点,除根结点和叶结点,其他的是内部结点.结点 ...
- 自己动手实现java数据结构(六)二叉搜索树
1.二叉搜索树介绍 前面我们已经介绍过了向量和链表.有序向量可以以二分查找的方式高效的查找特定元素,而缺点是插入删除的效率较低(需要整体移动内部元素):链表的优点在于插入,删除元素时效率较高,但由于不 ...
- 原生JS实现二叉搜索树(Binary Search Tree)
1.简述 二叉搜索树树(Binary Search Tree),它或者是一棵空树,或者是具有下列性质的二叉树: 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值: 若它的右子树不空,则右子 ...
- HDU - 3791 建立二叉搜索树
题意: 给定一个序列,下面又有n个序列,判断这个序列和其他序列是否为同一个二叉树(同一序列数字各不相同) 思路: 首先讲将一个序列建立成二叉搜索树,然后将其他序列也建立二叉搜索树,两个树进行前序遍历, ...
- 数据结构中的树(二叉树、二叉搜索树、AVL树)
数据结构动图展示网站 树的概念 树(英语:tree)是一种抽象数据类型(ADT)或是实作这种抽象数据类型的数据结构,用来模拟具有树状结构性质的数据集合.它是由n(n>=1)个有限节点组成一个具有 ...
- Java实现二叉搜索树的插入、删除
前置知识 二叉树的结构 public class TreeNode { int val; TreeNode left; TreeNode right; TreeNode() { } TreeNode( ...
- 手写AVL平衡二叉搜索树
手写AVL平衡二叉搜索树 二叉搜索树的局限性 先说一下什么是二叉搜索树,二叉树每个节点只有两个节点,二叉搜索树的每个左子节点的值小于其父节点的值,每个右子节点的值大于其左子节点的值.如下图: 二叉搜索 ...
- 斜堆(二)之 C++的实现
概要 上一章介绍了斜堆的基本概念,并通过C语言实现了斜堆.本章是斜堆的C++实现. 目录1. 斜堆的介绍2. 斜堆的基本操作3. 斜堆的C++实现(完整源码)4. 斜堆的C++测试程序 转载请注明出处 ...
随机推荐
- csharp: datatable get Column datatype or Column Name
/// <summary> ///列表名 /// </summary> /// <param name="table"></param&g ...
- LeetCode赛题390----Elimination Game
# 390. Elimination Game There is a list of sorted integers from 1 to n. Starting from left to right, ...
- Event percentages解析
Event percentages: 0:--pct-touch//touch events percentage触摸事件百分比(触摸事件是一个在屏幕单一位置的按下-抬起事件) 1:--pct-mot ...
- Non-resolvable parent POM for com.*******
场景: 同事新打了一个jar包到私服里面,自己删除了本地对应的中央仓库的依赖包,再次重新下载. 于是我又打开了一个idea的窗口重新引入这个项目,然后重新下载依赖的服务. 结果就一直报这个问题... ...
- 近期关于CI/CD策略以及git分支模型的思考
近两个月由于个人处于新环境.新项目的适应阶段,没怎么提笔写些文章.中间有好几个想法想记录下来分享,但受限于没有很好的时间段供自己总结思考(也可以总结为间歇性懒癌和剧癌发作),便啥也没有更新.借这个周末 ...
- JavaScript 使用HTML DOM的oninput事件,实时监听value值变化
<!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...
- 如何去掉HTML代码来获取纯文本?
public string TextNoHTML(string Htmlstring) { //删除脚本 Htmlstring = Regex.Replace(Htmlstring, @"& ...
- [翻译] AJProgressPanel
AJProgressPanel Animated progress panel 可做动画的进度条 No images needed, all CoreGraphics code 不需要图片,使用Cor ...
- HTML IMG标签SRC为null
今天做项目遇到一个错 研究了半天才发现 其实就是一个小错 稍微注意一下 就能规避 HTML标签<img src="null">这种情况下在chrom的debug下就会报 ...
- 乘风破浪:LeetCode真题_018_4Sum
乘风破浪:LeetCode真题_018_4Sum 一.前言 前面我们已经练习过了三个数相加的集合运算,现在变成了四个数,其实道理是一样的.三个数的时候可以转成两个数的加法,最后来解决,而四个数的可以转 ...