【BZOJ2216】Lightning Conductor(动态规划)
【BZOJ2216】Lightning Conductor(动态规划)
题面
题解
\(\sqrt {|i-j|}\)似乎没什么意义,只需要从前往后做一次再从后往前做一次就好了。
只考虑从前往后,把给定的式子移项,可以得到
\(p\ge a[j]-a[i]+\sqrt{i-j}\)
而\(a[i]\)是当前的枚举的位置\(i\)的值,这个是不会变化的。
所以要求的就是\(max(a[j]-\sqrt{i-j})\)
画出\(\sqrt x\)的函数图像,是一个增长率越来越慢的函数。
那么,如果当前转移\(i\)的时候,\(j\)优于\(k\)(\(k\lt j\)),
那么接下来转移\(i+1\)的时候同样\(j\)更优。
既然具有了决策单调性,直接二分就好了。
维护一个单调队列,存下当前位置\(j\)转移到哪些区间是更优的,
不难发现这个区间一定是\([l,n]\),当然也可能是个空区间。
插入的时候也二分修改一下就好了。有点类似于诗人小G那题。
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
#define ll long long
#define RG register
#define MAX 500500
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
struct Node{int i,l,r;}Q[MAX];
int h,t;
int n,a[MAX];
double f[MAX];
double Trans(int j,int i){return a[j]+sqrt(i-j);}
void Work()
{
Q[h=t=1]=(Node){1,2,n};
for(int i=2;i<=n;++i)
{
while(h<=t&&Q[h].r<i)++h;Q[h].l=i;
f[i]=max(f[i],Trans(Q[h].i,i)-a[i]);
while(h<=t&&Trans(Q[t].i,Q[t].l)<Trans(i,Q[t].l))--t;
if(h>t){Q[++t]=(Node){i,i,n};continue;}
int l=Q[t].l,r=Q[t].r,ret=Q[t].r+1;
while(l<=r)
{
int mid=(l+r)>>1;
if(Trans(Q[t].i,mid)<Trans(i,mid))ret=mid,r=mid-1;
else l=mid+1;
}
if(ret!=Q[t].l)Q[t].r=ret-1;else --t;
if(ret<=n)Q[++t]=(Node){i,ret,n};
}
}
int main()
{
n=read();
for(int i=1;i<=n;++i)a[i]=read();
Work();reverse(&a[1],&a[n+1]);reverse(&f[1],&f[n+1]);
Work();reverse(&f[1],&f[n+1]);
for(int i=1;i<=n;++i)printf("%d\n",(int)(ceil(f[i])));
return 0;
}
【BZOJ2216】Lightning Conductor(动态规划)的更多相关文章
- [BZOJ2216]Lightning Conductor
原来决策单调性指的是这个东西... 一些DP可以写成$f_i=\max\limits_{j\lt i}g(i,j)$,设$p_i(p_i<j)$表示使得$g(i,j)$最大的$j$,如果$p_1 ...
- 【BZOJ2216】[Poi2011]Lightning Conductor 决策单调性
[BZOJ2216][Poi2011]Lightning Conductor Description 已知一个长度为n的序列a1,a2,...,an.对于每个1<=i<=n,找到最小的非负 ...
- [bzoj 2216] [Poi2011] Lightning Conductor
[bzoj 2216] [Poi2011] Lightning Conductor Description 已知一个长度为n的序列a1,a2,-,an. 对于每个1<=i<=n,找到最小的 ...
- P3515 [POI2011]Lightning Conductor(决策单调性分治)
P3515 [POI2011]Lightning Conductor 式子可转化为:$p>=a_j-a_i+sqrt(i-j) (j<i)$ $j>i$的情况,把上式翻转即可得到 下 ...
- 【bzoj2216】[Poi2011]Lightning Conductor 1D1D动态规划优化
Description 已知一个长度为n的序列a1,a2,…,an.对于每个1<=i<=n,找到最小的非负整数p满足 对于任意的j, aj < = ai + p – sqrt(abs ...
- BZOJ2216 [Poi2011]Lightning Conductor 【决策单调性dp】
题目链接 BZOJ2216 题解 学过高中数学都应知道,我们要求\(p\)的极值,参变分离为 \[h_j + sqrt{|i - j|} - h_i \le p\] 实际上就是求\(h_j + sqr ...
- BZOJ2216 : [Poi2011]Lightning Conductor
$f[i]=\max(a[j]+\lceil\sqrt{|i-j|}\rceil)$, 拆开绝对值,考虑j<i,则决策具有单调性,j>i同理, 所以可以用分治$O(n\log n)$解决. ...
- 洛谷P3515 [POI2011]Lightning Conductor(动态规划,决策单调性,单调队列)
洛谷题目传送门 疯狂%%%几个月前就秒了此题的Tyher巨佬 借着这题总结一下决策单调性优化DP吧.蒟蒻觉得用数形结合的思想能够轻松地理解它. 首先,题目要我们求所有的\(p_i\),那么把式子变一下 ...
- bzoj 2216 Lightning Conductor - 二分法 - 动态规划
题目传送门 需要root权限的传送门 题目大意 给定一个长度为$n$的数组,要求对每个$1 \leqslant i \leqslant n$找到最小整数的$p$,对于任意$j$满足使得$a_{i} + ...
随机推荐
- 前端 CDNJS 库及 Google Fonts、Ajax 和 Gravatar 国内加速服务
由于某些众所周知的原因,好多开源的 JS 库采用的国外 CDN 托管方式在国内访问速度不如人意.所以我们特意制作了这个公益项目,托管了 CDNJS 的所有开源 JS 库以及反代了 Google Fon ...
- MySQL☞大结局
emmm,看了这么多大概会用了点点,学到了一点点 select 列名/*/聚合函数 from 表名1 别名1 连接查询(左外.右外等等) 表名2 别名2 on 关联条件 where 查询条件 g ...
- 转发——谷歌云官方:一小时掌握深度学习和 TensorFlow
转发——谷歌云官方:一小时掌握深度学习和 TensorFlow 本文转发自新智元,链接如下: http://mp.weixin.qq.com/s?__biz=MzI3MTA0MTk1MA==& ...
- 使用HackRF和外部时钟实现GPS欺骗实验
本文内容.开发板及配件仅限用于学校或科研院所开展科研实验! 淘宝店铺名称:开源SDR实验室 HackRF链接:https://item.taobao.com/item.htm?spm=a1z10.1- ...
- NUMA 体系架构
NUMA 体系架构 SMP 体系架构 NUMA 体系架构 NUMA 结构基本概念 Openstack flavor NUMA 策略 Nova 实现 NUMA 流程 1. SMP 体系架构 CPU 计算 ...
- 袋鼠云研发手记 | 数栈·开源:Github上400+Star的硬核分布式同步工具FlinkX
作为一家创新驱动的科技公司,袋鼠云每年研发投入达数千万,公司80%员工都是技术人员,袋鼠云产品家族包括企业级一站式数据中台PaaS数栈.交互式数据可视化大屏开发平台Easy[V]等产品也在迅速迭代.在 ...
- Python爬虫入门(7):正则表达式
下面就开始介绍一个十分强大的工具,正则表达式! 1.了解正则表达式 正则表达式是对字符串操作的一种公式,就是用事先定义好的一些特定字符.及这些特定字符的组合,组成一个“规则字符串”,这个“规则字符串” ...
- 2018软工实践—Alpha冲刺(2)
队名 火箭少男100 组长博客 林燊大哥 作业博客 Alpha 冲鸭鸭! 成员冲刺阶段情况 林燊(组长) 过去两天完成了哪些任务 协调各成员之间的工作 协助前端界面的开发 搭建测试用服务器的环境 完成 ...
- 【dp】New Keyboard
http://codeforces.com/gym/101397 B dp[i][j][k]: i为前一个行动的状态,0-switch.1-type,j为当前状态layout的编号,k 是已键入的字符 ...
- 01_Java基础_第1天(Java概述、环境变量、注释、关键字、标识符、常量)_讲义
今日内容介绍 1.Java开发环境搭建 2.HelloWorld案例 3.注释.关键字.标识符 4.数据(数据类型.常量) 01java语言概述 * A: java语言概述 * a: Java是sun ...