pxp
Time Limit: 2000 ms Memory Limit: 512 MB
Description
给定 \(n\), 求\(\sum\limits_{p,q∈primes}[pq≤n]\)
(其中 primes 表示全体质数组成的集合)
(其中 [expression] 当 expression 为真时值为 \(1\), 否则为 \(0\))
Input
一行一个数 \(n\)
Output
一行一个数表示答案
Sample Input
sample 1:
1
sample 2:
5
sample 3:
10
Sample Output
sample 1:
0
sample 2:
1
sample 3:
6
HINT
对于 20% 的数据, \(1≤n≤10^8\)
对于 100% 的数据 , \(1≤n≤10^{11}\)
Solution
(所以为什么学长强行出了一道科普性质的题啊qwq被科普到了qwq)
- 20%
线性筛爆搞一下就好了
- 100%
于是乎这里就科普了一种十分神秘的筛法了qwq
首先先想想怎么去求我们的\(ans\)
用\(pcnt(i)\)表示小于等于\(i\)的素数的个数,用\(cnt\)表示小于等于\(\sqrt{n}\)的素数的个数,\(P\)为素数列表,那么
\]
具体一点的话就是,如果两个素数\(p\)和\(q\)的乘积小于等于\(n\),那么这两个素数中必定有一个小于等于\(\sqrt{n}\),所以我们只要枚举小于等于\(\sqrt{n}\)的那个素数然后把\(pcnt(\lfloor\frac{n}{p}\rfloor)\)累加起来最后乘个\(2\)就好了,然而由于这样在枚举的时候会重复,所以我们钦定每个素数只算与大于它的素数相乘的贡献,因此要减掉\(i\)(也就是前面小于p的数中有多少个素数),最后再加上自己乘自己的\(cnt\)种情况就好了
那么现在的问题就是要求\(pcnt(i)\),我们先不考虑空间的问题
考虑把\(pcnt(i)\)筛出来,大致思路如下:
1.去掉既不是合数也不是素数的\(1\)
2.去掉小于等于i的合数
去掉\(1\)的话就是初始化\(pcnt(i)=i-1\),这个比较好搞
去掉合数的话,我们考虑用每个素数\(p\)去筛掉\(i>p\)的\(pcnt(i)\)中的一些数
考虑每个\(p\)能够筛掉的部分,应该是形如\(p*k\ (k\in [2,\lfloor \frac{i}{p} \rfloor])\)的
而因为我们是从小到大一直用不同的素数去筛,所以到用\(p\)筛的时候,\(pcnt(i)\)中包含的数的最小质因子应该是大于等于\(p\)的,所以\(p\)能够筛掉的部分,实际上应该是形如\(的最小质因子p*k\ (k的最小质因子>=p)\),也就是说实际上真正能够被\(p\)筛掉数的\(i\)应该满足:\(i>=p^2\)
再考虑一下当前那些还没有被完全筛成正确答案的\(pcnt(x)\)具有什么性质:
1.\(x>p\)
2.\(pcnt(x)\)由两部分组成,对于小于\(p\)的部分,所有的合数已经被筛完了,而大于\(p\)的部分,仅有最小 质因子\(>=p\)的数
也就是说\(pcnt(x)\)=小于\(p\)的素数个数 + \(p\)到\(x\)中最小质因子\(>=p\)的数的个数
然后回去看对于\(pcnt(i)\)来说\(p\)能够筛掉的数,我们会发现其实上面提到的\(k\)的个数其实就是\(pcnt(\lfloor \frac{i}{p}\rfloor)-pcnt(p-1)\)
具体一点的话就是:
(因为只有对于\(i>=p^2\)的\(pcnt(i)\),\(p\)才能筛掉数,所以接下来讨论的\(pcnt(i)\)都默认\(i>=p^2\))
因为\(i>=p^2\),所以\(\lfloor \frac{i}{p}\rfloor>=p\)
对于大于的情况,\(pcnt(\lfloor \frac{i}{p}\rfloor)=小于p的素数个数+p到\lfloor \frac{i}{p}\rfloor中的最小质因子>=p的数的个数\)
那么\(k\)的个数就是\(pcnt(\lfloor \frac{i}{p}\rfloor)-pcnt(p-1)\)(\(pcnt(p-1)\)已经被筛好了)
对于等于的情况,能去掉的只有\(p^2\),此时\(pcnt(\lfloor \frac{i}{p}\rfloor)=pcnt(p)\), 相减一下得到\(1\),也是成立的
综上,筛掉合数我们要做的就是:
用每个素数去筛,对于每个\(i>=p^2\),从\(pcnt(i)\)减去\(pcnt(\lfloor \frac{i}{p}\rfloor)-pcnt(p-1)\)即可
至于素数,其实也不用预处理什么的,只要判断\(pcnt(i)\)与\(pcnt(i-1)\)是否相等即可,不等说明\(i\)是素数
然而现在的问题是,空间开不了这么大啊
我们考虑将\(pcnt(i)\)分成两部分:
\(p1(i)=pcnt(i)\)和\(p2(i)=pcnt(\lfloor \frac{n}{i}\rfloor)\),\(i\in[1,\sqrt{n}]\)
\(p1(i)\)的话直接算就好了
\(p2(i)\)的话,考虑用\(p\)来筛的情况,我们套回上面的式子稍微化一下得到:
p2(i)&=pcnt(\lfloor \frac{n}{i}\rfloor)\\
&=pcnt(\lfloor \frac{n}{i}\rfloor)-(pcnt(\lfloor \frac{\lfloor \frac{n}{i}\rfloor}{p}\rfloor)-pcnt(p-1))\\
&=pcnt(\lfloor \frac{n}{i}\rfloor)-(pcnt(\lfloor \frac{n}{i*p}\rfloor))-pcnt(p-1))\\
\end{aligned}
\]
考虑\(\lfloor \frac{n}{i*p}\rfloor\)的取值,如果说这个值小于等于\(\sqrt{n}\)那么\(pcnt(\lfloor \frac{n}{i*p}\rfloor)=p1(\lfloor \frac{n}{i*p}\rfloor)\),否则\(pcnt(\lfloor \frac{n}{i*p}\rfloor)=p2(i*p)\)
那就直接在枚举的时候判断一下就好了
注意最后统计\(ans\)的时候因为我们要调用的是\(()pcnt(\lfloor \frac{n}{P_i}\rfloor)(\lfloor \frac{n}{P_i}\rfloor>=\sqrt{n})\),所以应该是用\(p2(\lfloor \frac{n}{\lfloor \frac{n}{P_i}\rfloor}\rfloor)\)
代码大概长这个样子
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#define ll long long
using namespace std;
const int MAXN=1e6+10;
ll p1[MAXN],p2[MAXN],lis[MAXN];
ll n,m,sq,ans,cnt;
int main(){
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
#endif
scanf("%lld",&n);
sq=sqrt(n);
for (int p=2;p<=sq;++p) p2[p]=n/p-1,p1[p]=p-1;
for (ll p=2;p<=sq;++p)
if (p1[p]!=p1[p-1]){
lis[++cnt]=p;
for (ll i=1;i<=sq&&1LL*p*p<=n/i;++i){
if (n/(1LL*p*i)>sq)
p2[i]-=p2[p*i]-p1[p-1];
else
p2[i]-=p1[n/(1LL*p*i)]-p1[p-1];
}
for (int i=sq;i>=p*p;--i){
p1[i]-=p1[i/p]-p1[p-1];
}
}
ans=0;
for (int i=1;i<=cnt;++i)
ans+=p2[n/(n/lis[i])]-i;
printf("%lld\n",ans*2+cnt);
}
pxp的更多相关文章
- ListView初探
一.ListView介绍 在Android开发中ListView是比较常用的控件,常用于以列表的形式显示数据集及根据数据的长度自适应显示. ListView通常有两个主要功能点: (1)将数据集填充到 ...
- java web学习总结(三十一) -------------------EL表达式
一.EL表达式简介 EL 全名为Expression Language.EL主要作用: 1.获取数据 EL表达式主要用于替换JSP页面中的脚本表达式,以从各种类型的web域 中检索java对象.获取数 ...
- 【krpano】krpano xml资源解密(破解)软件说明与下载(v1.4)
欢迎加入qq群551278936讨论krpano技术以及获取最新软件. 该软件已经不再维护,现在已经被KRPano资源分析工具取代,详情参见 http://www.cnblogs.com/reac ...
- mysql深入浅出的笔记(存储过程二)
1.条件的定义和处理可以用来定义在处理过程中遇到问题时相应的处理步揍: DECLARE condition_name CONDITION FOR condition_value condition_v ...
- 【CQgame】[幸运方块 v1.1.2] [Lucky_Block v1.1.2]
搬家首发!!! 其实从初一我就写过一些小型战斗的游戏,但是画面都太粗糙,代码也比较乱,也就是和两三个同学瞎玩,但自从观摩了PoPoQQQ大神的游戏,顿时产生了重新写一部游戏的冲动,于是各种上网查找各种 ...
- 浅谈ThinkPHP3.2的子域名部署和路由优化(一)
前言:建立一个网站系统,往往包含多个子网站,例如PC官网,移动端官网,后台管理,数据源自一个相同的数据库,整个架构上,从ThinkPHP来看,可以大体理解为Model(M)是一样的,Controlle ...
- 3.Java网络编程之IP
前面两篇博文我们已经简单了解了IP.端口.协议以及两种参考模型,我们现在重新从程序角度来看下这个参考模型. 如果我们从事的是Web网站开发,那么我们应该知道HTML是一种超文本标记语言 (Hyper ...
- 1.Java基础之System对象
毕向东老师Java基础学习笔记——System对象 今天学习Java中的System对象后,感觉这个对象对我们主要有以下几点用处. 1.获取当前操作系统版本和类型. 2.获取当前操作系统的path中的 ...
- C++ 基础知识复习(五)
UML建模部分 70. 什么是UML: 答: Unified Modeling Language, 统一建模语言,是一种标准的图形化建模语言.是面向对象分析和设计的标准表示. 71. UML有哪些图: ...
随机推荐
- selenium自动化之处理浏览器警告弹窗
有的网站会弹出类似如下图的警告弹窗,你会发现这种弹窗在html源码中怎么也定位不到,接下来将介绍这种弹窗的处理方式. 其实这种弹窗是不属于html的元素的,他是属于浏览器自带的弹窗,所以用定位元素的方 ...
- fiddler的断点使用
功能 用于修改数据 1.断点设置请求之前--修改请求数据 2.断点设置在响应时--对响应的数据修改 已中断的会话最前面的图标为红色的带箭头的标志 设置断点方法 1.菜单栏:rules->auto ...
- leetcode-优美的排列
假设有从 1 到 N 的 N 个整数,如果从这 N 个数字中成功构造出一个数组,使得数组的第 i 位 (1 <= i <= N) 满足如下两个条件中的一个,我们就称这个数组为一个优美的排列 ...
- 高可用Kubernetes集群-6. 部署kube-apiserver
八.部署kube-apiserver 接下来3章节是部署Kube-Master相关的服务,包含:kube-apiserver,kube-controller-manager,kube-schedule ...
- JAVA学习笔记--正则表达式
正则表达式是一种强大而灵活的文本处理工具.使用正则表达式,可以让我们以编程的方式构造复杂的文本,并对输入的字符串进行搜索. 一.基础正则表达式语法(表格来自J2SE6_API) 字符 x 字符 x \ ...
- Digital Roots:高精度
C - Digital Roots Description The digital root of a positive integer is found by summing the digits ...
- [C++] Solve "Cannot run program "gdb": Unknown reason" error
In Mac OSX, The Issue Image: 1. Build the project on Eclipse successfully. 2. Run gdb on command lin ...
- 20170928-3 四则运算psp
1.本周psp: 2.本周进度条: 3.累计进度图(折线图): 4.psp饼状图:
- 20172330 2017-2018-1 《Java程序设计》第十一周学习总结
20172330 2017-2018-1 <程序设计与数据结构>第十一周学习总结 教材学习内容总结 本周的学习内容为集合 Android简介 Android操作系统是一种多用户的Linux ...
- OC创建对象并访问成员变量
1.创建一个对象 Car *car =[Car new] 只要用new操作符定义的实体,就会在堆内存中开辟一个新空间 [Car new]在内存中 干了三件事 1)在堆中开辟一段存储空间 2)初始化成员 ...