优先队列(堆) -数据结构(C语言实现)
数据结构与算法分析
优先队列
模型
- Insert(插入) == Enqueue(入队)
- DeleteMin(删除最小者) == Dequeue(出队)
基本实现
- 简单链表:在表头插入,并遍历该链表以删除最小元
时间代价昂贵
- 二叉查找树
二叉查找树支持许多不需要的操作,实现麻烦,不值得
最合适:二叉堆
二叉堆
堆的两种性质
结构性
- 完全二叉树:除底层外完全填满,底层也是从左至右填
- 完全二叉树的高为
log N
- 分布很有规律可以用数组实现
左儿子 = 2i
右儿子 = 2i + 1
堆序性
- 树的最小元应该在根节点上
- 每个节点X,X的父亲的关键字应该小于或等于X的关键字
实现
优先队列的声明
struct HeapStrcut ;
typedef struct HeapStruct *PriorityQueue ;
PriorityQueue Intialize(int MaxElement) ;
void Destory(PriorityQueue H) ;
void MakeEmpty(PriorityQueue H) ;
void Insert(ElementType X, PriorityQueue H) ;
ElementType DeleteMin(PriotityQueue H) ;
ElementType Find(PritityQueue H) ;
int IsEmpty(PriorityQueue H) ;
int IsFull(PriorityQueue H) ;
srtuct HeapStruct
{
int Capacity ;
int Size l
ElementType *Elements ;
}
初始化
PriorityQueue Intialize(int MaxElement)
{
PriorityQueue H ;
H->Elements = malloc((MaxElement + 1) * sizeof(ElementType) ;
if(H->Elements == NULL)
FatalError("内存不足");
H->Capacity = MaxElement ;
H->Size = 0;
H->Elements[0] = MinData ;//在根节点赋一个绝对的小的值
return H ;
}
Insert操作
上滤
void Insert(ElementType X, PriorityQueue H)
{
int i ;
if(IsFull(H))
Error("堆满") ;
for(i = ++H->Size;H->Elements[i/2] > X;i/2)
H->Elenemts[i] = H->Elements[i/2] ;
H->Elements[i] = X ;
return H ;
}
Delete函数
下滤
先拿到最后一个元素,和当前被删除后剩下的空穴的最小儿子比较,如果儿子小则换至空穴,继续下滤,反之将最后一个元素放置空穴结束下滤
ElementType Insert(PriorityQueue H)
{
int i,Child ;
ElementType MinElement,LastElement ;
if(IsEmpty(H))
{
Error("堆为空") ;
return H->Elements[0] ;
}
MinElement = H->Elements[1];
LastElement = H->Elements[H->Size--] ;
for(i = 1; i * 2 <= H->Size;i = Child)
{
Child = i * 2;
if(Child != H->Size && H->Element[Child] > H->Elements[Child + 1])
Child ++ ;
if(LastElement > H->Elements[Child)
H->Elements[i] = H->Elements[Child] ;
else break ;
}
H->Elements[i] = LastElement ;
return MinElenemt;
}
左式堆
性质
高效支持Merge操作
和二叉树唯一区别在于:左式堆不是理想平衡的
对于堆中的每一个节点X,左儿子的零路径长NPL大于右儿子的零路径长NPL
- 零路径长(NPL):从该节点到一个没有两个儿子的节点的最短路径长
左式堆的类型声明
PriorityQueue Intailize(void) ;
ElementType FindMin(PriorityQueue H) ;
int IsEmpty(PriorityQueue H) ;
PriorityQueue Merge(PriorityQueue H1,PriorityQueue H2) ;
#define Insert(X,H) (H = Insert1(X,H)) ; //为了兼容二叉堆
PriorityQueue Insert1(ElementType, PriorityQueue H) ;
PriorityQueue DeleteMin(PriorityQueue H) ;
sturct TreeNode
{
ElementType Element ;
PriorityQueue Left ;
PriorityQueue Right ;
int Npl ;
}
Merge操作
驱动程序
PriorityQueue Merge(PriorityQueue H1,PriorityQueue H2)
{
if(H1 == NULL)
return H2 ;
eles if(H2 == NULL)
return H1 ;
else if(H1->Element > H2->Element)
return Merge1(H1,H2) ;
else
return Merge1(H1S,H2) ;
}
实际操作
PriorityQueue Merge1(PriortyQueue H1,PriorityQueue H2)
{
if(H1->Left == NULL)
H1->Left = H2 ;
else
{
H2->Right = Merge1(H1->Right,H2) ;
if(H1->Left->Npl < H1->Right->Npl)
SwapChildren(H1) ;
H1->Npl = H1->Right->Npl + 1;
}
return H1 ;
}
Insert操作
PriorityQueue Insert(ElementType X,PriorityQueue H)
{
PriorityQueue SinglNode ;
SinglNode = malloc(sizeof(TreeNode)) ;
if(SinglNode == NULL)
FatalError("内存不足") ;
else
{
SingleNode->Element = X ;
SingleNode->Npl = 0 ;
SingleNode->Left = SingleNode->Right = NULL ;
Merge(SingleNode,H) ;
}
return H ;
}
Delete操作
PriorityQueue DeleteMin1(PriorityQueue H)
{
PriorityQueue LeftHeap,RightHeap ;
if(IsEmpty(H))
FatalError("队列为空") ;
else
{
LeftHeap = H1->Left ;
RightHeap = H1->Right ;
free(H) ;
Merge(LeftHeap,RightHeap) ;
}
}
二项队列
结构
- 二项队列是堆序树的集合,称为森林
- 堆序中每颗树都是有约束的树,称为二项树
- 高度为k的二项树有一颗二项树Bk-1附接到另一颗二项树Bk-1的根上
二项队列的实现
二项队列将是二项树的数组
二项树的每个节点包含数据,第一个儿子和兄弟
二项队列的类型声明 `
typedef struct BinNode *Position ;
typedef struct Collection *BinQueue ;
struct BinNode
{
ElementType Element ;
Position LeftChild ;
Position NextBiling ;
}
typedef Position BinTree ;
struct Collection
{
int CurrentSize ;
BinTree TheTrees[MaxTree] ;
}
Merge操作
合并两个相同大小的两颗二项树
BinTree ConbineTrees(BinTree T1,BinTree T2)
{
if(T1->Element > T2->Element)
return CombineTree(T2,T1) ;
T2->NextBling = T1->LeftChild ;
T1->LeftChild = T2 ;
return T1 ;
}
合并两个优先队列
BinQueue Merge(BinQueue H1,BinQueue H2)
{
BinTree T1,T2,Carry = NULL ;
int i ,j ;
if(H1->CurrentSize + H2->CurrentSize > Capacity)
Error("合并后过大") ;
H1->CurrentSize += H2->CurrentSize ;
for(i = 0;j = 1;j <= H1->CurrentSize; i++,j *= 2)
{
T1 = H1->TheTree[i] ;
T2 = H2->TheTree[i] ;
switch(!!T1 + 2 * !!T2 + 4 * !!Carry)
{
case 0 : //空树
case 1:
break ; //只有H1
case 2:
H1->TheTree[i] = T2
H2->TheTree[i] = NULL ;
break ;
case 4:
H1->TheTree[i] = Carry ;
Carry = NULL ;
case 3: //h1 and h2
Carry = CombineTrees(T1,T2) ;
H1->TheTree[i] = H1->TheTree[i] = NULL ;
break ;
case 5: //h1 and carry
Carry = ConbineTrees(T1,Carry) ;
H1->TheTrees[i] = NULL ;
case 6:
Carry = ConbineTrees(T2,Carry) ;
H2->TheTrees[i] = NULL ;
case 7: //都有
H1->TheTree[i] = Carry ;
Carry = CombineTrees(T1,T2) ;
H2->TheTrees[i] = NULL ;
break ;
}
}
return H1 ;
}
总结
优先队列可以用二叉堆实现,简单快速
但考虑到Merge操作,又延申了左式堆和二次队列
优先队列(堆) -数据结构(C语言实现)的更多相关文章
- 数据结构( Pyhon 语言描述 ) — —第10章:树
树的概览 树是层级式的集合 树中最顶端的节点叫做根 个或多个后继(子节点). 没有子节点的节点叫做叶子节点 拥有子节点的节点叫做内部节点 ,其子节点位于层级1,依次类推.一个空树的层级为 -1 树的术 ...
- Python -- 堆数据结构 heapq - I love this game! - 博客频道 - CSDN.NET
Python -- 堆数据结构 heapq - I love this game! - 博客频道 - CSDN.NET Python -- 堆数据结构 heapq 分类: Python 2012-09 ...
- 数据结构(C语言)—排序
数据结构(C语言)—排序 排序 排序是按关键字的非递增或递减顺序对一组记录中心进行排序的操作.(将一组杂乱无章的数据按一定规律顺次排列起来.) 未定列表与不稳定列表 假设 Ki = Kj ( 1 ≤ ...
- c++学习书籍推荐《清华大学计算机系列教材:数据结构(C++语言版)(第3版)》下载
百度云及其他网盘下载地址:点我 编辑推荐 <清华大学计算机系列教材:数据结构(C++语言版)(第3版)>习题解析涵盖验证型.拓展型.反思型.实践型和研究型习题,总计290余道大题.525道 ...
- 数据结构C语言版 有向图的十字链表存储表示和实现
/*1wangxiaobo@163.com 数据结构C语言版 有向图的十字链表存储表示和实现 P165 编译环境:Dev-C++ 4.9.9.2 */ #include <stdio.h> ...
- 数据结构C语言版 表插入排序 静态表
数据结构C语言版 表插入排序.txt两个人吵架,先说对不起的人,并不是认输了,并不是原谅了.他只是比对方更珍惜这份感情./* 数据结构C语言版 表插入排序 算法10.3 P267-P270 编译 ...
- 数据结构C语言版 弗洛伊德算法实现
/* 数据结构C语言版 弗洛伊德算法 P191 编译环境:Dev-C++ 4.9.9.2 */ #include <stdio.h>#include <limits.h> # ...
- 《数据结构-C语言版》(严蔚敏,吴伟民版)课本源码+习题集解析使用说明
<数据结构-C语言版>(严蔚敏,吴伟民版)课本源码+习题集解析使用说明 先附上文档归类目录: 课本源码合辑 链接☛☛☛ <数据结构>课本源码合辑 习题集全解析 链接☛☛☛ ...
- 堆的C语言实现
在C++中,可以通过std::priority_queue来使用堆. 堆的C语言实现: heap.c /** @file heap.c * @brief 堆,默认为小根堆,即堆顶为最小. */ #in ...
- Python实现堆数据结构
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2018/3/18 19:47 # @Author : baoshan # @Site ...
随机推荐
- 关于iOS Block当中为什么要用weakSelf和strongSelf的思考
场景:当你在某个界面请求网络数据的时候,用户不愿意等待点击了返回按钮,此时在Block当中用如下的方式使用weakSelf的话,有可能会奔溃(因为在并发编程的情况下,虽然在if判断的时候weaksel ...
- nodejs的事件轮询机制
1.timers定时器阶段 执行定时器到点的回调函数(所有定时器setTimeout / setInterval的回调函数都在这个阶段执行) 2.idle prepare 准备阶段 TCP错误回调 3 ...
- react项目 使用echarts
1.安装 npm install --save echarts-for-react //如果需要使用echarts的一些特殊方法需要安装 npm install --save echarts 2.使用 ...
- maven添加本地jar
maven有时需要添加了一些本地jar,记录下流程 1.在项目名下创建一个文件夹,起名为lib吧,放要的jar放进去 2.然后打开jar在的路径,打开命令窗口,执行 mvn install:insta ...
- kbmMW功能 - kbmMWProcess单元(转帖)
此贴为转发红鱼儿的文章,原贴地址: https://www.cnblogs.com/kinglandsoft/p/kbmmw-features-5-kbmmwprocess-unit.html 在新的 ...
- Hive(10)-文件存储格式
Hive支持的存储数据的格式主要有:TEXTFILE .SEQUENCEFILE.ORC.PARQUET 一. 列式存储和行式存储 左边为逻辑表,右边第一个为行式存储,第二个为列式存储 1. 行式存储 ...
- 树莓派3B+简单入门
刚刚入手一个树莓派3B+,树莓派板子.3.5寸电阻触摸屏.16G内存卡.外壳电源等一系列配件一共花了360大洋,这东西真不便宜.这里介绍一下系统安装.3.5寸屏幕安装.VNC远程屏幕. 先给大家看一下 ...
- STM32使用FatFs
1.定义一些变量在我们代码开始的部分,先定义一些变量供我们使用.这里选择几个来解析一下.第一个FIL file;这个变量是文件的结构体变量,记录了我们打开的文件的信息.使用f_open等函数的时候都要 ...
- 用Python批量下载DACC的MODIS数据
本人初次尝试用Python批量下载DACC的MODIS数据,记下步骤,提醒自己,数据还在下载,成功是否未知,等待结果中...... 若有大佬发现步骤有不对之处,望指出,不胜感激. 1.下载Python ...
- 经典傅里叶算法小集合 附完整c代码
前面写过关于傅里叶算法的应用例子. <基于傅里叶变换的音频重采样算法 (附完整c代码)> 当然也就是举个例子,主要是学习傅里叶变换. 这个重采样思路还有点瑕疵, 稍微改一下,就可以支持多通 ...