Mondriaan's Dream
Time Limit: 3000MS   Memory Limit: 65536K
Total Submissions: 20822   Accepted: 11732

Description

Squares and rectangles fascinated the famous Dutch painter Piet Mondriaan. One night, after producing the drawings in his 'toilet series' (where he had to use his toilet paper to draw on, for all of his paper was filled with squares and rectangles), he dreamt of filling a large rectangle with small rectangles of width 2 and height 1 in varying ways. 

Expert as he was in this material, he saw at a glance that he'll need a computer to calculate the number of ways to fill the large rectangle whose dimensions were integer values, as well. Help him, so that his dream won't turn into a nightmare!

Input

The input contains several test cases. Each test case is made up of two integer numbers: the height h and the width w of the large rectangle. Input is terminated by h=w=0. Otherwise, 1<=h,w<=11.

Output

For each test case, output the number of different ways the given rectangle can be filled with small rectangles of size 2 times 1. Assume the given large rectangle is oriented, i.e. count symmetrical tilings multiple times.

Sample Input

1 2
1 3
1 4
2 2
2 3
2 4
2 11
4 11
0 0

Sample Output

1
0
1
2
3
5
144
51205

Source

题意:

给定一个h*w的矩形。将矩形划分成1*2的小格子,有多少种方案。

思路:

考虑用行数作为状态,但是转移下一行时需要上一行的划分状态。

所以我们多开一维用于记录状态。用一个整数表示。第k位是1表示第i行第k列的格子是一个竖着的1*2长方形的上半部分。

那么对于第i+1行的状态j, j&k=0表示没有两个相邻行的相同列的格子都是长方形的上半部分。

j|k的二进制表示中,每一段连续的0都是偶数个。j|k是0的位,要么是j和k该位都是0说明这是一个横着的矩形。

只有这两种情况都满足时,(i, k)才能转移到(i+1, j)。

最后一行要输出的应该是没有一个1的情况。

注意要使用long long

 //#include <bits/stdc++.h>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<stdio.h>
#include<cstring>
#include<vector>
#include<map>
#include<set> #define inf 0x3f3f3f3f
using namespace std;
typedef long long LL; int h, w;
const int maxn = << ;
bool in_s[maxn];
long long dp[][maxn]; int main(){
while(scanf("%d%d", &h, &w) != EOF && (h || w)){
for(int i = ; i < << w; i++){
bool cnt = , has_odd = ;
for(int j = ; j < w; j++){
if(i >> j & ) has_odd |= cnt, cnt = ;
else cnt ^= ;
}
in_s[i] = has_odd | cnt ? : ;
} //memset(dp, 0, sizeof(dp));
dp[][] = ;
for(int i = ; i <= h; i++){
for(int j = ; j < << w; j++){
dp[i][j] = ;
for(int k = ; k < << w; k++){
if((k & j) == && in_s[k | j]){
dp[i][j] += dp[i - ][k];
}
}
}
}
printf("%lld\n", dp[h][]);
}
return ;
}

poj2411 Mondriaan's Dream【状压DP】的更多相关文章

  1. [poj2411] Mondriaan's Dream (状压DP)

    状压DP Description Squares and rectangles fascinated the famous Dutch painter Piet Mondriaan. One nigh ...

  2. POJ 2411 Mondriaan's Dream -- 状压DP

    题目:Mondriaan's Dream 链接:http://poj.org/problem?id=2411 题意:用 1*2 的瓷砖去填 n*m 的地板,问有多少种填法. 思路: 很久很久以前便做过 ...

  3. Poj 2411 Mondriaan's Dream(状压DP)

    Mondriaan's Dream Time Limit: 3000MS Memory Limit: 65536K Description Squares and rectangles fascina ...

  4. POJ 2411 Mondriaan's Dream ——状压DP 插头DP

    [题目分析] 用1*2的牌铺满n*m的格子. 刚开始用到动规想写一个n*m*2^m,写了半天才知道会有重复的情况. So Sad. 然后想到数据范围这么小,爆搜好了.于是把每一种状态对应的转移都搜了出 ...

  5. $POJ2411\ Mondriaan's\ Dream$ 状压+轮廓线$dp$

    传送门 Sol 首先状压大概是很容易想到的 一般的做法大概就是枚举每种状态然后判断转移 但是这里其实可以轮廓线dp 也就是从上到下,从左到右地放方块 假设我们现在已经放到了$(i,j)$这个位置 那么 ...

  6. POJ-2411 Mondriann's Dream (状压DP)

    求把\(N*M(1\le N,M \le 11)\) 的棋盘分割成若干个\(1\times 2\) 的长方形,有多少种方案.例如当 \(N=2,M=4\)时,共有5种方案.当\(N=2,M=3\)时, ...

  7. poj2411 Mondriaan's Dream (轮廓线dp、状压dp)

    Mondriaan's Dream Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 17203   Accepted: 991 ...

  8. POJ 2411 Mondriaan'sDream(状压DP)

    题目大意:一个矩阵,只能放1*2的木块,问将这个矩阵完全覆盖的不同放法有多少种. 解析:如果是横着的就定义11,如果竖着的定义为竖着的01,这样按行dp只需要考虑两件事儿,当前行&上一行,是不 ...

  9. POJ2411 - Mondriaan's Dream(状态压缩DP)

    题目大意 给定一个N*M大小的地板,要求你用1*2大小的砖块把地板铺满,问你有多少种方案? 题解 刚开始时看的是挑战程序设计竞赛上的关于铺砖块问题的讲解,研究一两天楞是没明白它代码是怎么写的,智商捉急 ...

  10. POJ2411 Mondriaan's Dream 题解 轮廓线DP

    题目链接:http://poj.org/problem?id=2411 题目大意 给你一个 \(n \times m (1 \le n,m \le 11)\) 的矩阵,你需要用若干 \(1 \time ...

随机推荐

  1. android Menu 笔记

    菜单是应用中常见的用户组件.本文介绍如何在布局文件和代码中添加menu,submenu以及在代码中添加的方法. 参考链接 https://developer.android.com/guide/top ...

  2. C++类的成员函数的形参列表后面的const

    看到(C++ Primer)类的成员函数这里,突然对成员函数形参列表后面的const感到迷惑. 因为书中开始说是修饰隐含形参this的,然后又说是声明该函数是只读的. 大为不解! 翻资料.找人讨论.. ...

  3. C# HttpClientHelper请求

    public class HttpClientHelper { /// <summary> /// get请求 /// </summary> /// <param nam ...

  4. LabVIEW中数组的自动索引

    我们在LabVIEW里面使用While或者是For循环结构的时候,就会发现每一个循环中在它们的循环结构的边界都可以自动完成一个数组元素的索引或累积.LabVIEW中循环结构的这种能力就叫做自动索引(A ...

  5. 使用C#压缩解压rar和zip格式文件

    为了便于文件在网络中的传输和保存,通常将文件进行压缩操作,常用的压缩格式有rar.zip和7z,本文将介绍在C#中如何对这几种类型的文件进行压缩和解压,并提供一些在C#中解压缩文件的开源库. 在C#. ...

  6. ulimit设置句柄数

    这几天在做一个性能测试,写了一个模拟发送http的程序.模拟100并发的情况下,随机发http get的请求.放到服务器上运行一段时间抛出Too many open files的异常. 这几天在做一个 ...

  7. 【树莓派】GSM900模块

    python代码 https://github.com/JFF-Bohdan/sim-module

  8. UGUI之Canvas和EventSystem

    先介绍一下UGUI必不可缺的两个组件:Canvas和EventSystem 事实上在场景中第一次创建UGUI控件的时候,这两个物体都会自动添加到场景中,当然,必不可缺的不是这两个物体,而是他们身上挂载 ...

  9. Unity带参数的协程

    两种方法都可以传递参数,代码如下: using UnityEngine; using System.Collections; public class Test : MonoBehaviour { v ...

  10. linux环境判断字符串是否为非空

    需求描述: 今天帮同事调整脚本,涉及到判断一个字符串为非空的,在此记录下. 操作过程: 通过-n来判断字符串是否为非空,如果为非空那么就是真 #!/bin/bash Str1='MyTest' if ...