摘自爱国师哥博客https://www.cnblogs.com/aiguona/p/7304945.html

一、概念

  从n个不同元素中任取m(m≤n)个元素,按照一定的顺序排列起来,叫做从n个不同元素中取出m个元素的一个排列。当m=n时所有的排列情况叫全排列。如果这组数有n个,那么全排列数为n!个。

  比如a,b,c的全排列一共有3!= 6 种 分别是{a, b, c}、{a, c, b}、{b, a, c}、{b, c, a}、{c, a, b}、{c, b, a}。

二、常用操作

  1.头文件

#include <algorithm>

  2.使用方法

  这里先说两个概念:“下一个排列组合”和“上一个排列组合”,对序列 {a, b, c},每一个元素都比后面的小,按照字典序列,固定a之后,a比bc都小,c比b大,它的下一个序列即为{a, c, b},而{a, c, b}的上一个序列即为{a, b, c},同理可以推出所有的六个序列为:{a, b, c}、{a, c, b}、{b, a, c}、{b, c, a}、{c, a, b}、{c, b, a},其中{a, b, c}没有上一个元素,{c, b, a}没有下一个元素。

    1)next_permutation:求下一个排列组合 

a.函数模板:next_permutation(arr, arr+size);
b.参数说明:
  arr: 数组名
  size:数组元素个数
c.函数功能: 返回值为bool类型,当当前序列不存在下一个排列时,函数返回false,否则返回true,排列好的数在数组中存储

d.注意:在使用前需要对欲排列数组按升序排序,否则只能找出该序列之后的全排列数。
    比如,如果数组num初始化为2,3,1,那么输出就变为了:{2 3 1} {3 1 2} {3 2 1}

2)prev_permutation:求上一个排列组合

a.函数模板:prev_permutation(arr, arr+size);
b.参数说明:
  arr: 数组名
  size:数组元素个数
c.函数功能: 返回值为bool类型,当当前序列不存在上一个排列时,函数返回false,否则返回true
d.注意:在使用前需要对欲排列数组按降序排序,否则只能找出该序列之后的全排列数。

三、代码:

 #include <iostream>
#include <algorithm>
using namespace std;
int main ()
{
int arr[] = {,,};
cout<<"用prev_permutation对3 2 1的全排列"<<endl;
do
{
cout << arr[] << ' ' << arr[] << ' ' << arr[]<<'\n';
}
while ( prev_permutation(arr,arr+) );///获取上一个较大字典序排列,如果3改为2,只对前两个数全排列
int arr1[] = {,,};
cout<<"用next_permutation对1 2 3的全排列"<<endl;
do
{
cout << arr1[] << ' ' << arr1[] << ' ' << arr1[] <<'\n';
}
while ( next_permutation(arr1,arr1+) ); ///获取下一个较大字典序排列,如果3改为2,只对前两个数全排列
///注意数组顺序,必要时要对数组先进行排序
return ;
}

C++ STL 全排列的更多相关文章

  1. C++ STL 全排列函数

    C++  全排列函数...一听名字就在<algorithm>中... 首先第一个说的是next_permutation: #include <algorithm> bool n ...

  2. ACM题目————STL + 全排列

    今天碰到一个函数,感觉挺好用的,全排列函数 next_permutation! 求全排列的函数,基本上与自己写的DFS时间复杂度差不多,毕竟是标准库.(2018-1-4 添加) 话不多说,直接上题. ...

  3. C++ STL 全排列函数详解

    一.概念 从n个不同元素中任取m(m≤n)个元素,按照一定的顺序排列起来,叫做从n个不同元素中取出m个元素的一个排列.当m=n时所有的排列情况叫全排列.如果这组数有n个,那么全排列数为n!个. 比如a ...

  4. 2017年上海金马五校程序设计竞赛:Problem A : STEED Cards (STL全排列函数)

    Description Corn does not participate the STEED contest, but he is interested in the word "STEE ...

  5. c++非STL全排列

    #include <cstdio> #include <vector> #include <string> #include <iostream> #i ...

  6. poj 1833 排列 STL 全排列公式

    排列 Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 15173   Accepted: 6148 Description 题 ...

  7. STL函数库的应用第四弹——全排列(+浅谈骗分策略)

    因为基础算法快学完了,图论又太难(我太蒻了),想慢慢学. 所以暂时不写关于算法的博客了,但又因为更新博客的需要,会多写写关于STL的博客. (毕竟STL函数库还是很香的(手动滑稽)) 请出今天主角:S ...

  8. HDU 6628 permutation 1 (暴力)

    2019 杭电多校 5 1005 题目链接:HDU 6628 比赛链接:2019 Multi-University Training Contest 5 Problem Description A s ...

  9. 杭电的题,输出格式卡的很严。HDU 1716 排列2

    题很简单,一开始写代码,是用整数的格式写的,怎么跑都不对,就以为算法错了,去看大佬们的算法STL全排列:next_permutation(); 又双叒叕写了好几遍,PE了将近次,直到跑了大佬代码发现, ...

随机推荐

  1. ThinkPHP微信扫码支付接口

    最近折腾微信扫码支付,看了微信官方文档,找了很多网页,发现和文档/demo不匹配,现在自己算是弄出来了(文件名称有所更改),贴出来分享一下 一.将有用的官方lib文件和使用的相关文件放置到vendor ...

  2. angular2jsonp如何跨域请求百度API进行定位

    前提,百度api的申请,不会的可以百度一下,下面是连接 http://lbsyun.baidu.com/index.php?title=webapi/ip-api 1.appMoudle里引入 imp ...

  3. Google Cloud Platform 续

    Google Cloud Platform 创建新实例 地区:australia-southeast1-a 机器类型:1个vCPU n1-standard-1 系统:Ubuntu 16.04 LTS ...

  4. colemak,你用了吗?

    为了输入代码的感觉更好,我学习了colemak键盘布局,这个布局它是在QWERTY的基础上改了10多个键. 开始的三天,感觉非常不好,每按一个键都要思考很长时间,干脆在网上找了个在线打字的网页去练,感 ...

  5. 3.Hadoop测试Yarn和MapReduce

    Hadoop测试Yarn和MapReduce 1.配置Yarn (1)配置ResourceManager 生产环境中,一般是重开一台机器作为ResourceManager,这里我们以Master机器代 ...

  6. 用例程解释create_singlethread_workqueue与create_workqueue的区别

    用例程解释create_singlethread_workqueue与create_workqueue的区别 系统版本:linux3.4 使用create_singlethread_workqueue ...

  7. [转]IA64与X86-64的区别

    原文:https://www.cnblogs.com/sunbingqiang/p/7530121.html 说到IA-64与x86-64可能很多人会比较陌生.不知道你在下载系统的时候有没有注意过,有 ...

  8. C++与C#的多态

    C++ 多态 多态按字面的意思就是多种形态.当类之间存在层次结构,并且类之间是通过继承关联时,就会用到多态. C++ 多态意味着调用成员函数时,会根据调用函数的对象的类型来执行不同的函数. 下面的实例 ...

  9. 20155214曾士轩 2016-2017-2 《Java程序设计》第1周学习总结

    20155214曾士轩 2006-2007-2 <Java程序设计>第1周学习总结 教材学习内容总结 浏览教材,根据自己的理解每章提出一个问题 1.标准API的架构指的是什么? 2.一个项 ...

  10. 实验五 Java网络编程

    实验五 Java网络编程 实验五 Java网络编程 实验五所涉及的密码学算法及编程思路 ## Java对称加密-DES算法 (1) 获取密钥生成器 KeyGenerator kg=KeyGenerat ...