[再寄小读者之数学篇](2014-06-23 积分不等式 [中国科学技术大学2013年高等数学B 考研试题])
设 $f(x)$ 在 $[a,b]$ 上一阶连续可导, $f(a)=0$. 证明: $$\bex \int_a^b f^2(x)\rd x\leq \cfrac{(b-a)^2}{2}\int_a^b [f'(x)]^2\rd x -\cfrac{1}{2}\int_a^b [f'(x)]^2 (x-a)^2\rd x. \eex$$
证明: $$\beex \bea \int_a^b f^2(x)\rd x &=\int_a^b \sez{\int_a^xf'(t)\rd t}^2\rd x\\ &\leq \int_a^b \sez{ \int_a^x f'^2(t)\rd t \cdot \int_a^x 1^2\rd t }\rd x\\ &=\int_a^b \int_a^x (x-a)f'^2(t)\rd t\rd x\\ &=\int_a^b \int_t^b (x-a)f'^2(t)\rd x\rd t\\ &=\int_a^b f'^2(t)\int_t^b (x-a)\rd x\rd t\\ &=\int_a^b f'^2(t)\cfrac{(b-a)^2-(t-a)^2}{2}\rd t. \eea \eeex$$
[再寄小读者之数学篇](2014-06-23 积分不等式 [中国科学技术大学2013年高等数学B 考研试题])的更多相关文章
- [再寄小读者之数学篇](2014-06-23 二阶导数估计 [中国科学技术大学2013年高等数学B 考研试题])
设 $f(x)$ 二阶连续可导, $f(0)=f(1)=0$, $\dps{\max_{0\leq x\leq 1}f(x)=2}$. 证明: $$\bex \min_{0\leq x\leq 1}f ...
- [再寄小读者之数学篇](2014-06-22 积分不等式 [中国科学技术大学2012年高等数学B考研试题])
函数 $f(x)$ 在 $[0,1]$ 上单调减, 证明: 对于任何 $\al\in (0,1)$, $$\bex \int_0^\al f(x)\rd x\geq \al \int_0^1 f(x) ...
- [再寄小读者之数学篇](2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合)
(2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合) 设 ${\bf A},{\bf B}$ 都是反对称矩阵, 且 ${\b ...
- [再寄小读者之数学篇](2014-06-22 求导数 [中国科学技术大学2014年高等数学B考研试题])
设 $f(x)=x^2\ln(x+1)$, 求 $f^{(n)}(0)$. 解答: 利用 Leibniz 公式易知 $f'(0)=f''(0)=0$, $f^{(n)}(0)=(-1)^{n-3} n ...
- [再寄小读者之数学篇](2014-06-26 Logarithmical Sobolev inequality using BMO space)
$$\bex q>3\ra \sen{\n f}_{L^\infty} \leq C(q)\sez{ 1+\sen{\n f}_{BMO} \ln^\frac{1}{2}\sex{e+\sen{ ...
- [再寄小读者之数学篇](2014-06-26 Besov space estimates)
(1) $$\bex \sen{D^k f}_{\dot B^s_{p,q}}\sim \sen{f}_{\dot B^{s+k}_{p,q}}. \eex$$ (2) $$\beex \bea &a ...
- [再寄小读者之数学篇](2014-06-23 Bernstein's inequality)
$$\bex \supp \hat u\subset \sed{2^{j-2}\leq |\xi|\leq 2^j} \ra \cfrac{1}{C}2^{jk}\sen{f}_{L^p} \leq ...
- [再寄小读者之数学篇](2014-06-21 Beal-Kaot-Majda type logarithmic Sobolev inequality)
For $f\in H^s(\bbR^3)$ with $s>\cfrac{3}{2}$, we have $$\bex \sen{f}_{L^\infty}\leq C\sex{1+\sen{ ...
- [再寄小读者之数学篇](2014-06-20 求极限-H\"older 不等式的应用)
设非负严格增加函数 $f$ 在区间 $[a,b]$ 上连续, 有积分中值定理, 对于每个 $p>0$ 存在唯一的 $x_p\in (a,b)$, 使 $$\bex f^p(x_p)=\cfrac ...
随机推荐
- easyUI行删除
function removeRow(target,number) { if (number) { var index = getRowIndex(target); $datagrid.datagri ...
- 【题解】P2324 [SCOI2005]骑士精神
·有关IDA* 是带有估值函数的迭代加深搜索,表现出出色的效率. 估值函数可以简单的定义为「已经到位的骑士的个数」. 然后就是普通的迭代加深了. 算法酷炫不一定赢,搜索好才是成功. ——Loli Co ...
- 011_如何decode url及图片转为base64文本编码总结
一.咱们经常会遇到浏览器给encode后的url,如何转换成咱们都能识别的url呢?很简单,talk is easy,Please show me your code,如下所示: (1)英文decod ...
- (八)Index and Query a Document
Let’s now put something into our customer index. We’ll index a simple customer document into the cus ...
- C# 对文本文件的几种读写方法总结
计算机在最初只支持ASCII编码,但是后来为了支持其他语言中的字符(比如汉字)以及一些特殊字符(比如€),就引入了Unicode字符集.基于Unicode字符集的编码方式有很多,比如UTF-7.UTF ...
- spring+struts2+hibernate框架搭建(Maven工程)
搭建Spring 1.porm.xml中添加jar包 <!-- spring3 --> <dependency> <groupId>org.springframew ...
- 使用反射动态调用ActiveX控件
使用反射动态调用ActiveX控件 袁永福 2018-3-2 ■■■■问题描述: 目前的基于.NET平台的软件研发中仍然存在大量的对COM及ActiveX控件的调用.使用C#调用ActiveX控件时一 ...
- AI要被祭天了!删Bug,删着删着把全部代码都删了
近日,美国版的“大众点评”,本想训练 AI 来消除 bug,结果它把所有内容删除了... Yelp 在其最新更新的 App 中写道: “我们为本周使用该app遇到问题的用户致歉.我们训练了一个神经网络 ...
- docker(一) Centos7下安装docker
docker(一) Centos7下安装dockerdocker(二) windows10下安装dockerdocker(三) 镜像和容器常用命令 docker(四) 使用Dockerfile构建镜像 ...
- Laravel 框架结构 以及目录文件解读(学习笔记)
composer下载Laravel 5.4(由于PHP版本仅7.0,故未下载5.6) composer create-project laravel/laravel your-project-name ...