Problem Statement

In the city of Nevermore, there are 108 streets and 108 avenues, both numbered from0 to 108−1. All streets run straight from west to east, and all avenues run straight from south to north. The distance between neighboring streets and between neighboring avenues is exactly 100 meters.

Every street intersects every avenue. Every intersection can be described by pair(x,y), where x is avenue ID and y is street ID.

There are N fountains in the city, situated at intersections (Xi,Yi). Unlike normal intersections, there's a circle with radius 10 meters centered at the intersection, and there are no road parts inside this circle.

The picture below shows an example of how a part of the city with roads and fountains may look like.

City governors don't like encountering more than one fountain while moving along the same road. Therefore, every street contains at most one fountain on it, as well as every avenue.

Citizens can move along streets, avenues and fountain perimeters. What is the shortest distance one needs to cover in order to get from intersection (x1,y1) to intersection (x2,y2)?

Constraints

  • 0≤x1,y1,x2,y2<108
  • 1≤N≤200,000
  • 0≤Xi,Yi<108
  • XiXj for ij
  • YiYj for ij
  • Intersections (x1,y1) and (x2,y2) are different and don't contain fountains.
  • All input values are integers.

Input

Input is given from Standard Input in the following format:

x1 y1 x2 y2
N
X1 Y1
X2 Y2
:
XN YN

Output

Print the shortest possible distance one needs to cover in order to get from intersection (x1,y1) to intersection (x2,y2), in meters. Your answer will be considered correct if its absolute or relative error doesn't exceed 10−11.

Sample Input 1

1 1 6 5
3
3 2
5 3
2 4

Sample Output 1

891.415926535897938

One possible shortest path is shown on the picture below. The path starts at the blue point, finishes at the purple point and follows along the red line.

Sample Input 2

3 5 6 4
3
3 2
5 3
2 4

Sample Output 2

400.000000000000000

Sample Input 3

4 2 2 2
3
3 2
5 3
2 4

Sample Output 3

211.415926535897938
 

愚人节赛的第二题(滑稽)。
首先可以知道,每经过一个喷泉,都只可能走1/4或1/2个圆。而且走半个圆相对直走来说更长,走1/4个圆相对直走来说更短。
同时,由于只有一个询问,所以可以把考虑的范围缩到以边(S,T)为对角线的矩形中。
而且,每一小段的长度都远大于走喷泉节省的距离,且喷泉数量很有限,所以最优解中不存在绕路走喷泉的情况。
设S在矩形左下角,T在矩形右上角,易知此时最优解中经过的喷泉的x,y坐标单调上升,LIS直接刚。
需要注意的是,若矩形的每一行(列)都存在要走的喷泉,则必有一个喷泉要走整圈(否则会走出矩形)。
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define y1 Y1
using namespace std;
const int maxn=,inf=1e8;
const double qarc=acos(-)*5.0;
int n,cnt,x1,x2,y1,y2;
int f[maxn],g[maxn],b[maxn];
struct p{int x,y;}a[maxn];
inline int read(){
int x=,f=;char ch=getchar();
for(;ch<''||ch>'';f=ch=='-'?-:,ch=getchar());
for(;ch>=''&&ch<='';x=x*+ch-,ch=getchar());
return x*f;
}
bool cmp(p a,p b){return a.x<b.x;}
int main(){
x1=read();y1=read();x2=read();y2=read();n=read();
for(int i=;i<=n;i++)a[i].x=read(),a[i].y=read();
if(x1>x2){
x1=inf-x1;x2=inf-x2;
for(int i=;i<=n;i++)a[i].x=inf-a[i].x;
}
if(y1>y2){
y1=inf-y1;y2=inf-y2;
for(int i=;i<=n;i++)a[i].y=inf-a[i].y;
}
sort(a+,a+n+,cmp);
int tot=,ans1=;
for(int i=;i<=n;i++)
if(a[i].x>=x1&&a[i].x<=x2&&a[i].y>=y1&&a[i].y<=y2)
b[++tot]=a[i].y;
for(int i=;i<=tot;i++){
f[i]=lower_bound(g+,g+ans1+,b[i])-g;
if(f[i]>ans1)ans1=f[i],g[ans1]=b[i];
else g[f[i]]=min(g[f[i]],b[i]);
}
double ans=(double)(x2+y2-x1-y1)*100.0;
ans-=ans1*(-qarc);
if(ans1==min(y2-y1+,x2-x1+))ans+=qarc;
printf("%.15lf",ans);
return ;
}

[AtCoder 2702]Fountain Walk - LIS的更多相关文章

  1. 【agc019C】Fountain Walk

    Portal --> agc019C Description 有一个\(10^8*10^8\)的网格图,一格距离为\(100\),第\(x\)条竖线和第\(y\)条横线的交点记为\((x,y)\ ...

  2. Agc019_C Fountain Walk

    传送门 题目大意 给定网格图上起点和终点每个格子是长为$100$米的正方形,你可以沿着线走. 平面上还有若干个关键点,以每个关键点为圆心,$10$为半径画圆,表示不能进入圆内的线,但是可以从圆周上走, ...

  3. 【AtCoder】AGC019

    A - Ice Tea Store 算一下每种零售最少的钱就行,然后优先买2,零头买1 #include <bits/stdc++.h> #define fi first #define ...

  4. AtCoder Beginner Contest 085(ABCD)

    A - Already 2018 题目链接:https://abc085.contest.atcoder.jp/tasks/abc085_a Time limit : 2sec / Memory li ...

  5. AtCoder Grand Contest 031 简要题解

    AtCoder Grand Contest 031 Atcoder A - Colorful Subsequence description 求\(s\)中本质不同子序列的个数模\(10^9+7\). ...

  6. AtCoder Beginner Contest 165

    比赛链接:https://atcoder.jp/contests/abc165/tasks A - We Love Golf 题意 区间 $[a, b]$ 中是否存在 $k$ 的倍数. 代码 #inc ...

  7. Lis日常维护

    1.[问题]护士站打印LIs条码,出来是PDF格式的 [解决]在文件夹Client\NeusoftLis\Xml\Print.xml中把BarcodePrint Name的值改成安装的斑马打印机名(不 ...

  8. uva10635 LIS

    Prince and PrincessInput: Standard Input Output: Standard Output Time Limit: 3 Seconds In an n x n c ...

  9. python os.walk()

    os.walk()返回三个参数:os.walk(dirpath,dirnames,filenames) for dirpath,dirnames,filenames in os.walk(): 返回d ...

随机推荐

  1. 【Android入门】一个App学会安卓开发

    一.程序项目架构

  2. 吴恩达《机器学习》课程笔记——第七章:Logistic回归

    上一篇  ※※※※※※※※  [回到目录]  ※※※※※※※※  下一篇 7.1 分类问题 本节内容:什么是分类 之前的章节介绍的都是回归问题,接下来是分类问题.所谓的分类问题是指输出变量为有限个离散 ...

  3. Java基础11-List;Set;Map

    作业解析: remove(int index); //删除指定位置的元素 List list = new ArrayList(); list.add("s1"); list.add ...

  4. MySQL:参数wait_timeout和interactive_timeout以及空闲超时的实现【转】

    一.参数意思 这里简单解释一下两个参数,含义如下: interactive_timeout:The number of seconds the server waits for activity on ...

  5. Linux禁止ping、开启ping设置

    Linux默认是允许Ping响应的,系统是否允许Ping由2个因素决定的:A.内核参数,B.防火墙,需要2个因素同时允许才能允许Ping,2个因素有任意一个禁Ping就无法Ping. 具体的配置方法如 ...

  6. linux查找删除某天前的文件(转载)

    语句写法:find 对应目录 -mtime +天数 -name "文件名" -exec rm -rf {} \; 例1: 将/usr/local/backups目录下所有10天前带 ...

  7. Python 正则表达式 flags 参数

    flags参数 re.I IGNORECASE 忽略字母大小写 re.L LOCALE 影响 “w, “W, “b, 和 “B,这取决于当前的本地化设置. re.M MULTILINE 使用本标志后, ...

  8. js数据结构与算法——队列

    <script> //创建一个队列 function Queue(){ let items = []; //向队尾添加一个新的项 this.enqueue = function(eleme ...

  9. electron Windows和mac 的菜单栏隐藏

    1.Windows隐藏方法 const {electron,Menu,debug} = require('electron'); Menu.setApplicationMenu(null) 2.mac ...

  10. netstat、ps、top 、kill 命令备忘

    1.ps命令用于显示当前进程 (process) 的状态. -aux 显示所有包含其他使用者的行程. -e 显示所有进程. -f 全格式输出. 一般带参数 -ef 或者 -aux ,差别不大. 区别: ...