题目链接


\(Description\)

给定\(n\),表示有一张\(n\)个点的无向图,两个点\(x,y\)之间有权值为\(1\)的边当且仅当\(\gcd(x,y)\neq1\)。求\(1\sim n\)任意两点之间的最短路长度的和是多少。两个点不连通最短路长度为\(0\)。

\(n\leq10^7\)。

\(Solution\)

具体看这里吧,前面也挺重要的但我不抄了就简单记一下了(好像反而写的很详细了)。

先分类讨论一下,然后记\(mn_x\)为\(x\)的最小质因子,主要的问题在于求:$$\sum_{x,y}[\gcd(x,y)=1][mn_x\times mn_y\leq n]$$

反演一下(当然下面这个式子求出来要除以\(2\)):$$\begin{aligned}上式&=\sum_{d=1}^n\mu(d)\sum_{d\mid x}\sum_{d\mid y}[mn_x\times mn_y\leq n]\&=\sum_{x=1}n\sum_{y=1}n[mn_x\times mn_y\leq n]+\sum_{d=2}^n\mu(d)\sum_{d|x}\sum_{d|y}[mn_x\times mn_y\leq n]\end{aligned}$$

前面部分可以直接拿个桶然后前缀和一下。对于后面的部分,我们考虑:

  1. \(d\leq\sqrt n\)时,因为\(d\mid x\),所以有\(mn_x\leq mn_d\),即一定有\(mn_x\times mn_y\leq n\)。那么合法方案数是\(\lfloor\frac nd\rfloor^2\)。
  2. \(d>\sqrt n\)时,设\(x=k_1d,y=k_2d\),那么有\(k_1,k_2\leq\sqrt n\)。\(k_1,k_2\neq1\)时,\(k_1\times k_2\leq n\)显然合法。

    \(k\)有一个是\(1\)时,假设是\(k_2\),\(mn_x\times mn_y\)就是\(k_1d=x\),显然也是\(\leq n\)。

    \(k_1=k_2=1\)时,若\(d\)不是质数,那么\(d\)一定存在一个因子\(\leq\sqrt n\),那么也有\(mn_x\times mn_y=mn_d^2\leq n\)。

    所以当且仅当\(k_1=k_2=1\)且\(d\)为质数时,\((x,y)\)不合法。那么合法方案数就是\(\lfloor\frac nd\rfloor^2\)-1。

那么枚举\(d\)就可以求出答案啦。


//296ms	161300KB
#include <cmath>
#include <cstdio>
#include <algorithm>
typedef long long LL;
const int N=1e7+5; int P[N>>3],phi[N],mu[N],mn[N],cnt[N]; void Init(const int n)
{
phi[1]=mu[1]=1;
for(int i=2,cnt=0; i<=n; ++i)
{
if(!mn[i]) P[++cnt]=mn[i]=i, phi[i]=i-1, mu[i]=-1;
for(int j=1,v; j<=cnt&&(v=i*P[j])<=n; ++j)
{
mn[v]=P[j];
if(i%P[j]) phi[v]=phi[i]*(P[j]-1), mu[v]=-mu[i];
else {phi[v]=phi[i]*P[j], mu[v]=0; break;}
}
}
} int main()
{
int n; scanf("%d",&n); Init(n);
LL ans=0,t2=0,t3=0,tot=0;
for(int i=2,half=n>>1; i<=n; ++i) if(mn[i]!=i||i<=half) ++tot, t2+=i-1-phi[i], ++cnt[mn[i]];
tot=tot*(tot-1)>>1;//总合法对数
for(int i=2; i<=n; ++i) cnt[i]+=cnt[i-1];
for(int i=2,half=n>>1; i<=n; ++i) if(mn[i]!=i||i<=half) t3+=cnt[n/mn[i]];
for(int d=2,m=sqrt(n); d<=n; ++d)
{
LL tmp=1ll*(n/d)*(n/d);
if(d>m&&mn[d]==d) --tmp;
t3+=mu[d]*tmp;
}
t3>>=1, ans+=t2+(t3<<1)+(tot-t2-t3)*3;
printf("%I64d\n",ans); return 0;
}

Codeforces.871D.Paths(莫比乌斯反演 根号分治)的更多相关文章

  1. [Codeforces]871D Paths

    失踪OJ回归. 毕竟这样的数论没做过几道,碰上一些具体的应用还是无所适从啊.小C还是借助这题大致摸索一下莫比乌斯函数吧. Description 有n个点,标号为1~n,为这n个点建一张无向图.两个点 ...

  2. Codeforces 348C - Subset Sums(根号分治)

    题面传送门 对于这类不好直接维护的数据结构,第一眼应该想到-- 根号分治! 我们考虑记[大集合]为大小 \(\geq\sqrt{n}\) 的集合,[小集合]为大小 \(<\sqrt{n}\) 的 ...

  3. Codeforces 871D Paths (欧拉函数 + 结论)

    题目链接  Round  #440  Div 1  Problem D 题意   把每个数看成一个点,如果$gcd(x, y) \neq 1$,则在$x$和$y$之间连一条长度为$1$的无向边.   ...

  4. Luogu4240 毒瘤之神的考验 莫比乌斯反演、根号分治

    传送门 首先有\(\varphi(ij) = \frac{\varphi(i) \varphi(j) \gcd(i,j)}{\varphi(\gcd(i,j))}\),把欧拉函数的定义式代入即可证明 ...

  5. Codeforces 809E - Surprise me!(虚树+莫比乌斯反演)

    Codeforces 题目传送门 & 洛谷题目传送门 1A,就 nm 爽( 首先此题一个很棘手的地方在于贡献的计算式中涉及 \(\varphi(a_ia_j)\),而这东西与 \(i,j\) ...

  6. codeforces#1139D. Steps to One (概率dp+莫比乌斯反演)

    题目链接: http://codeforces.com/contest/1139/problem/D 题意: 在$1$到$m$中选择一个数,加入到一个初始为空的序列中,当序列的$gcd$和为$1$时, ...

  7. Codeforces 1039D You Are Given a Tree [根号分治,整体二分,贪心]

    洛谷 Codeforces 根号分治真是妙啊. 思路 考虑对于单独的一个\(k\)如何计算答案. 与"赛道修建"非常相似,但那题要求边,这题要求点,所以更加简单. 在每一个点贪心地 ...

  8. UOJ#33. 【UR #2】树上GCD 点分治 莫比乌斯反演

    原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ33.html 题解 首先我们把问题转化成处理一个数组 ans ,其中 ans[i] 表示 d(u,a) 和 ...

  9. 【CodeForces】915 G. Coprime Arrays 莫比乌斯反演,前缀和,差分

    Coprime Arrays CodeForces - 915G Let's call an array a of size n coprime iff gcd(a1, a2, ..., *a**n) ...

随机推荐

  1. Docker容器进入的4种方式

    Docker容器进入的4种方式 $ sudo docker ps $ sudo docker exec -it 775c7c9ee1e1 /bin/bash 在使用Docker创建了容器之后,大家比较 ...

  2. 为什么会有这么多python?其实python并不是编程语言!

    Python是出类拔萃的 然而,这是一句非常模棱两可的话.这里的"Python"到底指的是什么? 是Python的抽象接口吗?是Python的通用实现CPython吗(不要把CPy ...

  3. 驱动调试(四)oops确定调用树

    目录 驱动调试(四)oops确定调用树 内核开启调用树 栈指针分析 原理 寄存器别名 基础解释 例子分析 找到PC地址的位置 栈分析 附录:原文的excel title: 驱动调试(四)oops确定调 ...

  4. cacti报警邮件的设置

    众所周知,用Linux系统自带的sendmail发送邮件是有限制的,可能对有些邮箱无法正常发送,导致报警邮件不能够及时发送到,因此就可能会产生不必要的麻烦!对此,我们可以用其他方法来发送邮件,就是在c ...

  5. mysql递归

    sql Server可以用with as 语法,mysql没有这个功能,只能用别的方式了,目前的mysql版本中并不支持直接的递归查询,但是通过递归到迭代转化的思路,还是可以在一句SQL内实现树的递归 ...

  6. numpy&pandas基础

    numpy基础 import numpy as np 定义array In [156]: np.ones(3) Out[156]: array([1., 1., 1.]) In [157]: np.o ...

  7. Mysql MGR架构误操作引发的问题处理

    [背景介绍] 故障方描述:一次用户刷权限的时候不小心把数据库用户表记录删掉了,执行之后发现不对后重建用户,杀掉进程后重新MGR启动报错. [报错信息] 2018-06-13T12:47:41.4055 ...

  8. 二维、三维 Laplace 算子的极坐标表示

    (1) 设 $(r,\theta)$ 是 $\bbR^2$ 的极坐标, 即 $$\bex x=r\cos\theta,\quad y=r\sin \theta. \eex$$ 证明 Laplace 算 ...

  9. TensorFlow资源整理

    什么是TensorFlow? TensorFlow 是一个采用数据流图(data flow graphs),用于数值计算的开源软件库.节点(Nodes)在图中表示数学操作,图中的线(edges)则表示 ...

  10. JavaScript事件的属性列表

    HTML 4.0 的新特性之一是能够使 HTML 事件触发浏览器中的行为,比如当用户点击某个 HTML 元素时启动一段 JavaScript.下面是一个属性列表,可将之插入 HTML 标签以定义事件的 ...