Multi-Nim

从最简单的Nim模型开始

它的定义是这样的

有\(n\)堆石子,两个人可以从任意一堆石子中拿任意多个石子(不能不拿)或把一堆数量不少于\(2\)石子分为两堆不为空的石子,没法拿的人失败。问谁会胜利

博弈分析

这个问题的本质还是Nim游戏,可以利用SG定理来解释

通过观察不难不发现,操作一与普通的Nim游戏等价

操作二实际上是将一个游戏分解为两个游戏,根据SG定理,我们可以通过异或运算把两个游戏连接到一起,作为一个后继状态

煮个栗子

SG(3)的后继状态有\(\{ (0),(1),(2),(1,2) \}\)他们的SG值分别为\(\{ 0,1,2,3 \}\),因此\(SG(3)=mex\{ 0,1,2,3 \}=4\)

另外这种游戏还有一个非常神奇的性质

\[SG\left( x\right) =\begin{cases}x-1\left( x\mod4=0\right) \\ x\left( x\mod4=1 \lor 2\right) \\ x+1\left( x\mod4=3\right) \end{cases}\]

然后把这个结论背过就好啦233

Multi-SG

根据上面的游戏,我们定义Multi-SG游戏

  • Multi-SG 游戏规定,在符合拓扑原则的前提下,一个单一游戏的后继可以为多个单一游戏
  • Multi-SG其他规则与SG游戏相同。

注意在这里要分清楚后继多个单一游戏

对于一个状态来说,不同的划分方法会产生多个不同的后继,而在一个后继中可能含有多个独立的游戏

一个后继状态的SG值即为后继状态中独立游戏的异或和

该状态的SG值即为后继状态的SG值中未出现过的最小值

例题

难度跨度好大啊QWQ。。

直接放题解吧

HDU 3032

POJ 2311

BZOJ 2940

BZOJ 1188

洛谷 3235

博弈论进阶之Multi-SG的更多相关文章

  1. 博弈论进阶之SG函数

    SG函数 个人理解:SG函数是人们在研究博弈论的道路上迈出的重要一步,它把许多杂乱无章的博弈游戏通过某种规则结合在了一起,使得一类普遍的博弈问题得到了解决. 从SG函数开始,我们不再是单纯的同过找规律 ...

  2. [您有新的未分配科技点]博弈论进阶:似乎不那么恐惧了…… (SJ定理,简单的基础模型)

    这次,我们来继续学习博弈论的知识.今天我们会学习更多的基础模型,以及SJ定理的应用. 首先,我们来看博弈论在DAG上的应用.首先来看一个小例子:在一个有向无环图中,有一个棋子从某一个点开始一直向它的出 ...

  3. 博弈论进阶之Anti-SG游戏与SJ定理

    前言 在上一节中,我们初步了解了一下SG函数与SG定理. 今天我们来分析一下SG游戏的变式--Anti-SG游戏以及它所对应的SG定理 首先从最基本的Anti-Nim游戏开始 Anti-Nim游戏是这 ...

  4. 博弈论进阶之Every-SG

    Every-SG 给定一张无向图,上面有一些棋子,两个顶尖聪明的人在做游戏,每人每次必须将可以移动的棋子进行移动,不能移动的人输 博弈分析 题目中的要求实际是"不论前面输与否,只要最后一个棋 ...

  5. luoguP3235 [HNOI2014]江南乐 数论分块 + 博弈论

    感觉其实很水? 题目就是一个Multi SG游戏,只需要预处理出所有的\(sg\)值即可\(O(Tn)\)计算 对于计算\(sg[n]\)而言,显然我们可以枚举划分了\(x\)堆来查看后继状态 那么, ...

  6. POJ2068 Nim 博弈论 dp

    http://poj.org/problem?id=2068 博弈论的动态规划,依然是根据必胜点和必输点的定义,才明白过来博弈论的dp和sg函数差不多完全是两个概念(前者包含后者),sg函数只是mex ...

  7. luogu P4018 Roy&October之取石子(博弈论)

    题意 题解 如果n是6的倍数,先手必败,否则先手必胜. 因为6*x一定不是pk 所以取得话会变成6*y+a的形式a=1,2,3,4,5: 然后a一定为质数.我们把a取完就又成为了6*x的形式. 又因为 ...

  8. BestCoder Round #90

    有生以来第一场在COGS以外的地方打的比赛.挂成dog了. 主要是没有经验,加之代码能力过弱.还有最后的瞎hack三次,Too Young Too Simple...... 言归正传. (抄一发题解先 ...

  9. Redis入门指南

    随着互联网业务对性能需求日益强烈,作为Key/Value存储的Redis具有数据类型丰富和性能表现优异的特点.如果能够熟练地驾驭它,不管是把它用做缓存还是存储,对很多大型应用都很多帮助.新浪作为世界上 ...

随机推荐

  1. DCOS实践分享(6):基于DCOS的大数据应用分享

    Open DC/OS大中华区官方发布会在京隆重召开   DCOS领域诞生了一个100%开源的企业级Datacenter Operating System版本,即DC/OS.Linker Network ...

  2. [Swift]LeetCode714. 买卖股票的最佳时机含手续费 | Best Time to Buy and Sell Stock with Transaction Fee

    Your are given an array of integers prices, for which the i-th element is the price of a given stock ...

  3. WebSocket(3)---实现一对一聊天功能

    实现一对一聊天功能 功能介绍:实现A和B单独聊天功能,即A发消息给B只能B接收,同样B向A发消息只能A接收. 本篇博客是在上一遍基础上搭建,上一篇博客地址:[WebSocket]---实现游戏公告功能 ...

  4. ASP.NET Core 四种方式绑定枚举值

    前言 本节我们来讲讲在ASP.NET Core MVC又为我们提供了哪些方便,之前我们探讨过在ASP.NET MVC中下拉框绑定方式,这节我们来再来重点看看枚举绑定的方式,充分实现你所能想到的场景,满 ...

  5. java基础(五)-----关键字static

    在Java中并不存在全局变量的概念,但是我们可以通过static来实现一个“伪全局”的概念,在Java中static表示“全局”或者“静态”的意思,用来修饰成员变量和成员方法,当然也可以修饰代码块. ...

  6. Nancy in .NET Core学习笔记 - 路由

    前文中,我介绍了Nancy的来源和优点,并创建了一个简单的Nancy应用,在网页中输出了一个"Hello World",本篇我来总结一下Nancy中的路由 Nancy中的路由的定义 ...

  7. asp.net core系列 31 EF管理数据库架构--必备知识 反向工程

    一.   反向工程 反向工程是基于数据库架构,生成的实体类和DbContext类代码的过程,对于Visual Studio开发,建议使用PMC.对于其他开发环境,请选择.NET Core CLI工具( ...

  8. Linux服务器时间相关命令记录

    前言 以往安装服务器时间都是正常,但是最近服务器的时间经常出现问题,所以在安装配置完成服务器之后需要对服务器的时间进行测试,如果服务器时间异常,那么当程序去取系统时间的时候就会出现问题. 时间相关命令 ...

  9. C#2.0之细说泛型

    C#2的头号亮点 : 泛型 在C#1中,Arraylist总是会给人带来困扰,因为它的参数类型是Object,这就让开发者无法把握集合中都有哪些类型的数据.如果对string类型的数据进行算术操作那自 ...

  10. .NET Core下的Spring Cloud——前言和概述

    前言 前几年一直在写类似dubbo,Srping Cloud的微服务框架辗辗转转重复了多次,也重构推翻了很多次,其中诞生了"Rabbit.Rpc","Go",& ...