Multi-Nim

从最简单的Nim模型开始

它的定义是这样的

有\(n\)堆石子,两个人可以从任意一堆石子中拿任意多个石子(不能不拿)或把一堆数量不少于\(2\)石子分为两堆不为空的石子,没法拿的人失败。问谁会胜利

博弈分析

这个问题的本质还是Nim游戏,可以利用SG定理来解释

通过观察不难不发现,操作一与普通的Nim游戏等价

操作二实际上是将一个游戏分解为两个游戏,根据SG定理,我们可以通过异或运算把两个游戏连接到一起,作为一个后继状态

煮个栗子

SG(3)的后继状态有\(\{ (0),(1),(2),(1,2) \}\)他们的SG值分别为\(\{ 0,1,2,3 \}\),因此\(SG(3)=mex\{ 0,1,2,3 \}=4\)

另外这种游戏还有一个非常神奇的性质

\[SG\left( x\right) =\begin{cases}x-1\left( x\mod4=0\right) \\ x\left( x\mod4=1 \lor 2\right) \\ x+1\left( x\mod4=3\right) \end{cases}\]

然后把这个结论背过就好啦233

Multi-SG

根据上面的游戏,我们定义Multi-SG游戏

  • Multi-SG 游戏规定,在符合拓扑原则的前提下,一个单一游戏的后继可以为多个单一游戏
  • Multi-SG其他规则与SG游戏相同。

注意在这里要分清楚后继多个单一游戏

对于一个状态来说,不同的划分方法会产生多个不同的后继,而在一个后继中可能含有多个独立的游戏

一个后继状态的SG值即为后继状态中独立游戏的异或和

该状态的SG值即为后继状态的SG值中未出现过的最小值

例题

难度跨度好大啊QWQ。。

直接放题解吧

HDU 3032

POJ 2311

BZOJ 2940

BZOJ 1188

洛谷 3235

博弈论进阶之Multi-SG的更多相关文章

  1. 博弈论进阶之SG函数

    SG函数 个人理解:SG函数是人们在研究博弈论的道路上迈出的重要一步,它把许多杂乱无章的博弈游戏通过某种规则结合在了一起,使得一类普遍的博弈问题得到了解决. 从SG函数开始,我们不再是单纯的同过找规律 ...

  2. [您有新的未分配科技点]博弈论进阶:似乎不那么恐惧了…… (SJ定理,简单的基础模型)

    这次,我们来继续学习博弈论的知识.今天我们会学习更多的基础模型,以及SJ定理的应用. 首先,我们来看博弈论在DAG上的应用.首先来看一个小例子:在一个有向无环图中,有一个棋子从某一个点开始一直向它的出 ...

  3. 博弈论进阶之Anti-SG游戏与SJ定理

    前言 在上一节中,我们初步了解了一下SG函数与SG定理. 今天我们来分析一下SG游戏的变式--Anti-SG游戏以及它所对应的SG定理 首先从最基本的Anti-Nim游戏开始 Anti-Nim游戏是这 ...

  4. 博弈论进阶之Every-SG

    Every-SG 给定一张无向图,上面有一些棋子,两个顶尖聪明的人在做游戏,每人每次必须将可以移动的棋子进行移动,不能移动的人输 博弈分析 题目中的要求实际是"不论前面输与否,只要最后一个棋 ...

  5. luoguP3235 [HNOI2014]江南乐 数论分块 + 博弈论

    感觉其实很水? 题目就是一个Multi SG游戏,只需要预处理出所有的\(sg\)值即可\(O(Tn)\)计算 对于计算\(sg[n]\)而言,显然我们可以枚举划分了\(x\)堆来查看后继状态 那么, ...

  6. POJ2068 Nim 博弈论 dp

    http://poj.org/problem?id=2068 博弈论的动态规划,依然是根据必胜点和必输点的定义,才明白过来博弈论的dp和sg函数差不多完全是两个概念(前者包含后者),sg函数只是mex ...

  7. luogu P4018 Roy&October之取石子(博弈论)

    题意 题解 如果n是6的倍数,先手必败,否则先手必胜. 因为6*x一定不是pk 所以取得话会变成6*y+a的形式a=1,2,3,4,5: 然后a一定为质数.我们把a取完就又成为了6*x的形式. 又因为 ...

  8. BestCoder Round #90

    有生以来第一场在COGS以外的地方打的比赛.挂成dog了. 主要是没有经验,加之代码能力过弱.还有最后的瞎hack三次,Too Young Too Simple...... 言归正传. (抄一发题解先 ...

  9. Redis入门指南

    随着互联网业务对性能需求日益强烈,作为Key/Value存储的Redis具有数据类型丰富和性能表现优异的特点.如果能够熟练地驾驭它,不管是把它用做缓存还是存储,对很多大型应用都很多帮助.新浪作为世界上 ...

随机推荐

  1. 一个自己研究出来的字符串匹配算法-k子串算法

    前言 最近工作中需要写一个算法,而写完这个算法我却发现了一个很有意思的事情.需要的这个算法是这样的:对于A,B两个字符串,找出最多K个公共子串,使得这K个子串长度和最大.百度之没有这样的算法,然后就开 ...

  2. 深入理解JVM(四)——垃圾回收算法

    我们都知道java语言与C语言最大的区别就是内存自动回收,那么JVM是怎么控制内存回收的,这篇文章将介绍JVM垃圾回收的几种算法,从而了解内存回收的基本原理. stop the world 在介绍垃圾 ...

  3. Python 爬虫利器 Selenium

    前面几节,我们学习了用 requests 构造页面请求来爬取静态网页中的信息以及通过 requests 构造 Ajax 请求直接获取返回的 JSON 信息. 还记得前几节,我们在构造请求时会给请求加上 ...

  4. [Swift]LeetCode8. 字符串转整数 (atoi) | String to Integer (atoi)

    Implement atoi which converts a string to an integer. The function first discards as many whitespace ...

  5. [Swift]LeetCode244.最短单词距离 II $ Shortest Word Distance II

    This is a follow up of Shortest Word Distance. The only difference is now you are given the list of ...

  6. Android开发:Android虚拟机启动错误Can't find 'Linux version ' string in kernel image file

    Android启动出错,虚拟机报错信息如下: Starting emulator for AVD 'test' emulator: ERROR: Can't find 'Linux version ' ...

  7. 机器学习入门17 - 嵌套 (Embedding)

    原文链接:https://developers.google.com/machine-learning/crash-course/embeddings/ 嵌套是一种相对低维的空间,可以将高维矢量映射到 ...

  8. 推荐一款接口 API 设计神器!

    今天栈长给大家推荐一款接口 API 设计神器,传说中的,牛逼哄洪的 Swagger,它到底是什么?今天为大家揭开谜底! Swagger是什么? 官网:https://swagger.io/ Swagg ...

  9. JS设计模式之单例模式

    单例模式 单例模式的定义是:保证一个类只有一个实例,并提供一个访问它的全局访问点.比如说购物车,在一个商城中,我们只需要一个购物车,购物车在整个商城中是唯一的,不需要多次创建,即使多次点击购物车按钮, ...

  10. 12.Flask-Restful

    定义Restful的视图 安装:pip install flask-restful 如果使用Flask-restful,那么定义视图函数的时候,就要继承flask_restful.Resourse类, ...