Continuity of arithmetic operations
Arithmetic operations taught in elementary schools are continuous in the high level topological point of view. This signifies that there is literally no clear boundary between simple and complex, low and high concepts. Instead, they both play indispensable roles in mathematics with their conflation forming a unified logical system. In this post, a proof will be provided for the continuity of arithmetic operations, which are depicted in Exercise 12 of Section 21 and Theorem 21.5 in James Munkres "Topology".
Arithmetic operations on real numbers are continuous
Exercise 21.12 Prove continuity of the algebraic operations on \(\mathbb{R}\), as follows: Use the metric \(d(a, b) = \abs{a - b}\) on \(\mathbb{R}\) and the metric on \(\mathbb{R}^2\) given by the equation
\[
\rho((x,y),(x_0,y_0))=\max\{\abs{x-x_0},\abs{y-y_0}\}.
\]
Analysis The proof relies on Theorem 21.1. For a function \(f: X \rightarrow Y\), by fixing an arbitrary \(x_0\) in \(X\) and confining the variation of the independent variable \(x\) around this \(x_0\) to a specified range \(\delta\), the variation \(\varepsilon\) of the function value \(f(x)\) around \(f(x_0)\) can be arbitrarily small. By the way, it can be extended that an upper bound is set to \(\varepsilon\) and Theorem 21.1 still holds.
Proof (a) Show the addition operation is continuous.
Fix \((x_0, y_0)\) in \(\mathbb{R}\times\mathbb{R} \) and select \((x,y)\) in a range which ensures that for all \(\varepsilon>0\), \(d(x+y, x_0+y_0) < \varepsilon\). Then
\[
\begin{aligned}
d(x+y,x_0+y_0)&=\abs{(x+y)-(x_0+y_0)}\\
&\leq \abs{x-x_0}+\abs{y-y_0}\\
&\leq 2\rho((x,y),(x_0,y_0))
\end{aligned}.
\]
By enforcing \(2\rho((x,y),(x_0,y_0)) < \varepsilon\), we have \(\rho((x,y),(x_0,y_0)) < \frac{\varepsilon}{2}\). Therefore, let \(\delta=\frac{\varepsilon}{2}\), when \(\rho((x,y),(x_0,y_0)) < \delta\), \(d(x+y,x_0+y_0) < \varepsilon\). Hence, the addition operation is continuous.
(b) Show the multiplication operation is continuous.
Fix \((x_0,y_0)\) in \(\mathbb{R}\times\mathbb{R}\), we have
\[
\begin{aligned}
d(xy, x_0y_0) &= \abs{xy - x_0y_0} = \abs{xy - x_0y + x_0y - x_0y_0}\\
&=\abs{(x-x_0)y + x_0(y-y_0)} \\
&=\abs{(x-x_0)y - (x-x_0)y_0 + (x-x_0)y_0 + x_0(y-y_0)} \\
&=\abs{(x-x_0)(y-y_0) + (x-x_0)y_0 + x_0(y-y_0)}\\
&\leq \abs{x-x_0}\cdot\abs{y-y_0} + \abs{x-x_0}\cdot\abs{y_0} + \abs{x_0}\cdot\abs{y-y_0} \\
&\leq \rho((x,y),(x_0,y_0))^2 + \rho((x,y),(x_0,y_0))\abs{x_0} + \rho((x,y),(x_0,y_0))\abs{y_0}
\end{aligned}.
\]
Then, for all \(0 < \varepsilon \leq 1\), enforce the above inequality less than \(\varepsilon\):
\[
\begin{aligned}
d(xy, x_0y_0) &\leq \rho((x,y),(x_0,y_0))^2 + \rho((x,y),(x_0,y_0))\abs{x_0} + \rho((x,y),(x_0,y_0))\abs{y_0} \\
& < \varepsilon \leq 1
\end{aligned}.
\]
Because \(\rho((x,y),(x_0,y_0))^2<1\), \(\rho((x,y),(x_0,y_0))^2 \leq \rho((x,y),(x_0,y_0))\). Then we adopt a stronger enforcement by letting
\[
\begin{aligned}
d(xy, x_0y_0) &\leq \rho((x,y),(x_0,y_0))^2 + \rho((x,y),(x_0,y_0))\abs{x_0} + \rho((x,y),(x_0,y_0))\abs{y_0} \\
& \leq \rho((x,y),(x_0,y_0)) + \rho((x,y),(x_0,y_0))\abs{x_0} + \rho((x,y),(x_0,y_0))\abs{y_0} \\
& = \rho((x,y),(x_0,y_0)) (1 + \abs{x_0} + \abs{y_0}) \\
& < \varepsilon
\end{aligned}.
\]
This leads to
\[
\rho((x,y),(x_0,y_0)) < \frac{\varepsilon}{1 + \abs{x_0} + \abs{y_0}}.
\]
Because \((x_0,y_0)\) is given as a fixed point, the right hand side of the above inequality is a definite value. By letting \(\delta = \frac{\varepsilon}{1 + \abs{x_0} + \abs{y_0}}\), when \(\rho((x,y),(x_0,y_0))<\delta\), we have \(d(xy,x_0y_0)<\varepsilon\) and the multiplication operation is continuous.
(c) Show the subtraction operation is continuous.
First, let \(f: \mathbb{R} \rightarrow \mathbb{R}\) with \(f(x)=-x\) be the negation operation. For any open interval \((a,b)\) in \(\mathbb{R}\), \(f^{-1}((a,b)) = (-b,-a)\), which is also open. Hence \(f\) is continuous.
Then we prove Exercise 10 in Section 18, which will be used afterwards.
Exercise 18.10 Let \(f: A \rightarrow B\) and \(g: C \rightarrow D\) be continuous functions. Let us define a map \(f \times g: A \times C \rightarrow B \times D\) by the equation
\[
(f \times g)(a \times c) = f(a) \times g(c).
\]
Show that \(f \times g\) is continuous.
Let \(U\) be open in \(B\) and \(V\) be open in \(D\). Then \(U \times V\) is a topological basis of the produce space \(B \times D\). According to the definition of the product map \(f \times g\),
\[
(f \times g)^{-1}(U \times V) = f^{-1}(U) \times g^{-1}(V).
\]
Because both \(f\) and \(g\) are continuous, \(f^{-1}(U)\) is open in \(A\) and \(g^{-1}(V)\) is open in \(C\). Therefore, \(f^{-1}(U) \times g^{-1}(V)\) is a basis of \(A \times C\). Hence \(f \times g\) is continuous.
With Exercise 18.10 proved, \(F: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R} \times \mathbb{R}\) with \(F(x,y)=(x,-y)\) is a continuous function, because its first coordinate map is the continuous identity map and its second coordinate map is the continuous negation operation. Then, the subtraction operation can be treated as a composition of \(F\) and the continuous addition operation. According to Theorem 18.2 (c), the subtraction operation is continuous.
(d) Show the reciprocal operation \(f: \mathbb{R} - \{0\} \rightarrow \mathbb{R}\) with \(f(x) = \frac{1}{x}\) is continuous.
N.B. The domain of \(f\) is a subspace of \(\mathbb{R}\) having the subspace topology.
Let \((a,b)\) be an arbitrary open interval in \(\mathbb{R}\) and we consider the following five cases.
- For \(a>0\) and \(b>0\): \(f^{-1}((a,b)) = (\frac{1}{b}, \frac{1}{a})\).
- For \(a<0\) and \(b<0\): \(f^{-1}((a,b)) = (\frac{1}{b}, \frac{1}{a})\).
- For \(a=0\) and \(b>0\): \(f^{-1}((a,b)) = (\frac{1}{b}, \infty)\).
- For \(a<0\) and \(b=0\): \(f^{-1}((a,b)) = (-\infty, \frac{1}{a})\).
- For \(a<0\) and \(b>0\): \(f^{-1}((a,b)) = f^{-1}((a,0) \cup (0,b))\). Because the inverse map preserves set operations,
\[
f^{-1}((a,0) \cup (0,b)) = f^{-1}((a,0)) \cup f^{-1}((0,b)) = (-\infty, \frac{1}{a}) \cup (\frac{1}{b}, \infty).
\]
\(f^{-1}((a,b))\) is open in \(\mathbb{R} - \{0\}\) under the above five cases, so \(f\) is continuous.
(e) Show the quotient operation is continuous.
Define a function \(G: \mathbb{R} \times \mathbb{R} - \{0\} \rightarrow \mathbb{R} \times \mathbb{R} - \{0\}\) with \(G(x,y) = (x,\frac{1}{y})\). \(G\) is a continuous function according to Exercise 18.10 and part (d). Furthermore, the multiplication operation with its domain restricted to \(\mathbb{R} - \{0\}\) is also continuous due to Theorem 18.2 (d). Then the quotient operation as a composition of \(G\) and the domain-restricted multiplication operation is continuous.
Arithmetic operations on the space of continuous functions are continuous
Theorem 21.5 If \(X\) is a topological space, and if \(f, g: X \rightarrow \mathbb{R}\) are continuous functions, then \(f+g\), \(f-g\) and \(f \cdot g\) are continuous. If \(g(x) \neq 0\) for all \(x\), then \(f/g\) is continuous.
Comment
- This theorem is a high level version of Exercise 21.12. It states the arithmetic operations on real-valued functions instead of on real numbers.
- As already introduced in this post, arithmetic operations on continuous functions is one of the ways to construct new continuous functions.
Proof Take the addition operation \(f+g\) as example. It is defined as \((f+g)(x)=f(x)+g(x)\), which can be considered as a composition of two functions \(h_1: \mathbb{R} \rightarrow f(\mathbb{R}) \times g(\mathbb{R})\) with \(h_1(x)=(f(x),g(x))\) and \(h_2: f(\mathbb{R}) \times g(\mathbb{R}) \rightarrow \mathbb{R}\) with \(h_2(x,y)=x+y\). For each coordinate map of \(h_1\), it is the continuous identity map. According to Theorem 18.4 (Maps into products), \(h_1\) is continuous. \(h_2\) is the addition operation with a restricted domain, which is also continuous. Therefore \(f+g=h_2 \circ h_1\) is continuous.
Similarly, we can prove \(f-g\), \(f \cdot g\) and \(f/g\) with \(g(x) \neq 0\) for all \(x\) are continuous.
Continuity of arithmetic operations的更多相关文章
- [UCSD白板题] Maximize the Value of an Arithmetic Expression
Problem Introduction In the problem, your goal is to add parentheses to a given arithmetic expressio ...
- Project Euler 93:Arithmetic expressions 算术表达式
Arithmetic expressions By using each of the digits from the set, {1, 2, 3, 4}, exactly once, and mak ...
- Algebraic Kernel ( Arithmetic and Algebra) CGAL 4.13 -User Manual
1 Introduction Real solving of polynomials is a fundamental problem with a wide application range. T ...
- Modular Arithmetic ( Arithmetic and Algebra) CGAL 4.13 -User Manual
1 Introduction Modular arithmetic is a fundamental tool in modern algebra systems. In conjunction wi ...
- Algebraic Foundations ( Arithmetic and Algebra) CGAL 4.13 -User Manual
理解: 本节主要介绍CGAL的代数结构和概念之间的互操作.与传统数论不同,CGAL的代数结构关注于实数轴的“可嵌入”特征.它没有将所有传统数的集合映射到自己的代数结构概念中,避免使用“数的类型”这一术 ...
- General Decimal Arithmetic 浮点算法
General Decimal Arithmetic http://speleotrove.com/decimal/ General Decimal Arithmetic [ FAQ | Decima ...
- Element-wise operations
Element-wise operations An element-wise operation operates on corresponding elements between tensors ...
- Project Euler:Problem 93 Arithmetic expressions
By using each of the digits from the set, {1, 2, 3, 4}, exactly once, and making use of the four ari ...
- Hash function
Hash function From Wikipedia, the free encyclopedia A hash function that maps names to integers fr ...
随机推荐
- PTA编译总结求最大值及其下标
代码: #include<stdio.h> int main(void) { int i,index=0,n; int a[10]; scanf(" ...
- Xcode10 不能导入头文件(导入头文件不提示)
连接地址:https://blog.csdn.net/wyz670083956/article/details/87774705 xcode10可能是:Project Settings
- Java IO与网络编程笔记
<!doctype html>Java IO&NIO figure:first-child { margin-top: -20px; } #write ol, #write ul ...
- 2、for 循环
exit_flag = False for i in range(10): if i <5: continue ##继续循环下一次,后面不执行 print(i) for j in range(1 ...
- Image 上传下载Api
1.配置 "UploadConfig": { // 自定义存放位置,无需放到站点内部 "Path": "C:\\Users\\kxy\\Desktop ...
- mysql 5.7~默认sql_mode解读
当5.6升级到5.7时,首先要注意的就是sql_mode对业务的影响 大概可以分为几类1 共同支持,如果你的5.6和5.7sql_mode配置支持的交集一样,那么不用考虑2 5.7细说 1 ONLY ...
- Urban Elevations UVA - 221
题目大意:给出建筑的俯视图,以及每个建筑的左下角坐标,宽度,长度,高度.求正视图可观察到的建筑的编号 思路:建筑物的可见性等于南墙的可见性,依据左下角排序后,逐个判断每个建筑是否可见.对南墙的x坐标进 ...
- 解决多个py模块调用同一个python的logging模块,打印日志冲突问题
前期对python中的logging模块进行了封装,这样自动化测试框架中的多个测试脚本(py)就可以使用同一个封装后的日志系统,这样各脚本中只需要引用一下即可,方面快捷.那么当我使用unittest框 ...
- 使用scrapy爬虫,爬取17k小说网的案例-方法一
无意间看到17小说网里面有一些小说小故事,于是决定用爬虫爬取下来自己看着玩,下图这个页面就是要爬取的来源. a 这个页面一共有125个标题,每个标题里面对应一个内容,如下图所示 下面直接看最核心spi ...
- nginx跨域问题记录
现象:访问 toolbox.chinasoft.com 提示如下:Access to Font at 'https://images.chinasoft.com/static-toolbox/styl ...