CF719E. Sasha and Array [线段树维护矩阵]
CF719E. Sasha and Array
题意:
对长度为 n 的数列进行 m 次操作, 操作为:
- a[l..r] 每一项都加一个常数 C, 其中 0 ≤ C ≤ 10^9
- 求 F[a[l]]+F[a[l+1]]+...F[a[r]] mod 1e9+7 的余数
矩阵快速幂求斐波那契
矩阵满足乘法分配律和结合律!
所以可以每个节点维护矩阵/矩阵和,区间加相当于区间乘矩阵
注意:不要把快速幂写在里面,复杂度平添一个log。把\(B^C\)算出来之后传进去就好了
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
typedef long long ll;
#define lc x<<1
#define rc x<<1|1
#define mid ((l+r)>>1)
#define lson lc, l, mid
#define rson rc, mid+1, r
const int N = 1e5+5, P = 1e9+7;
int n, m;
struct Matrix {
ll a[2][2];
ll* operator [](int x) {return a[x];}
Matrix(int p=0) {
if(!p) a[0][0] = a[0][1] = a[1][0] = a[1][1] = 0;
else a[0][0] = a[1][1] = 1, a[0][1] = a[1][0] = 0;
}
} B;
Matrix operator + (Matrix a, Matrix b) {
Matrix c;
for(int i=0; i<2; i++)
for(int j=0; j<2; j++)
c[i][j] = (a[i][j] + b[i][j]) %P;
return c;
}
Matrix operator * (Matrix a, Matrix b) {
Matrix c;
for(int i=0; i<2; i++)
for(int j=0; j<2; j++) {
ll &x = c[i][j];
for(int k=0; k<2; k++)
x = (x + a[i][k] * b[k][j] %P) %P;
}
return c;
}
Matrix operator ^ (Matrix a, int b) {
Matrix ans(1);
ans[0][0] = ans[1][1] = 1;
for(; b; b>>=1, a=a*a)
if(b & 1) ans = ans*a;
return ans;
}
struct meow {
Matrix f;
Matrix v;
int c;
meow() {f[0][0] = 1; v[0][0] = v[1][1] = 1;}
} t[N<<2];
void paint(int x, int l, int r, int d, Matrix &v) {
t[x].c += d;
t[x].v = v * t[x].v;
t[x].f = v * t[x].f;
}
void push_down(int x, int l, int r) {
if(t[x].c) {
paint(lson, t[x].c, t[x].v);
paint(rson, t[x].c, t[x].v);
t[x].c = 0;
t[x].v = Matrix(1);
}
}
void merge(int x) {
t[x].f = t[lc].f + t[rc].f;
}
void build(int x, int l, int r) {
if(l == r) {
cin >> t[x].c;
if(t[x].c > 1) t[x].f = (B ^ (t[x].c - 1)) * t[x].f;
} else {
build(lson);
build(rson);
merge(x);
}
}
void Add(int x, int l, int r, int ql, int qr, int d, Matrix &v) {
if(ql <= l && r <= qr) paint(x, l, r, d, v);
else {
push_down(x, l, r);
if(ql <= mid) Add(lson, ql, qr, d, v);
if(mid < qr) Add(rson, ql, qr, d,v );
merge(x);
}
}
ll Que(int x, int l, int r, int ql, int qr) {
if(ql <= l && r <= qr) return t[x].f[0][0];
else {
push_down(x, l, r);
ll ans = 0;
if(ql <= mid) ans = (ans + Que(lson, ql, qr)) %P;
if(mid < qr) ans = (ans + Que(rson, ql, qr)) %P;
return ans;
}
}
int main() {
//freopen("in", "r", stdin);
ios::sync_with_stdio(false); cin.tie(); cout.tie();
B[0][0] = B[0][1] = B[1][0] = 1;
cin >> n >> m;
build(1, 1, n);
for(int i=1; i<=m; i++) {
int tp, l, r, x;
cin >> tp >> l >> r;
if(tp == 1) {
cin >> x;
Matrix t = B^x;
Add(1, 1, n, l, r, x, t);
} else cout << Que(1, 1, n, l, r) << '\n';
}
CF719E. Sasha and Array [线段树维护矩阵]的更多相关文章
- Codeforces Round #373 (Div. 2) E. Sasha and Array 线段树维护矩阵
E. Sasha and Array 题目连接: http://codeforces.com/contest/719/problem/E Description Sasha has an array ...
- 线段树维护矩阵【CF718C】 Sasha and Array
Description 有一个长为\(n\)的数列\(a_{1},a_{2}...a_{n}\),你需要对这个数列维护如下两种操作: \(1\space l \space r\space x\) 表示 ...
- CF718C Sasha and Array(线段树维护矩阵)
题解 (不会矩阵加速的先去学矩阵加速) 反正我想不到线段树维护矩阵.我太菜了. 我们在线段树上维护一个区间的斐波那契的列矩阵的和. 然后询问时提取每个符合题意列矩阵的答案项(不是列矩阵存了两项吗,一个 ...
- 【Codeforces718C】Sasha and Array 线段树 + 矩阵乘法
C. Sasha and Array time limit per test:5 seconds memory limit per test:256 megabytes input:standard ...
- Subsequence Count 2017ccpc网络赛 1006 dp+线段树维护矩阵
Problem Description Given a binary string S[1,...,N] (i.e. a sequence of 0's and 1's), and Q queries ...
- hdu 5068 线段树维护矩阵乘积
http://acm.hdu.edu.cn/showproblem.php?pid=5068 题意给的略不清晰 m个询问:从i层去j层的方法数(求连段乘积)或者修改从x层y门和x+1层z门的状态反转( ...
- Codeforces 1368H - Breadboard Capacity(最小割+线段树维护矩阵乘法)
Easy version:Codeforces 题面传送门 & 洛谷题面传送门 Hard version:Codeforces 题面传送门 & 洛谷题面传送门 首先看到这种从某一种颜色 ...
- Codeforces 750E - New Year and Old Subsequence(线段树维护矩阵乘法,板子题)
Codeforces 题目传送门 & 洛谷题目传送门 u1s1 我做这道 *2600 的动力是 wjz 出了道这个套路的题,而我连起码的思路都没有,wtcl/kk 首先考虑怎样对某个固定的串计 ...
- CF718C Sasha and Array 线段树 + 矩阵乘法
有两个操作: 将 $[l,r]$所有数 + $x$ 求 $\sum_{i=l}^{r}fib(i)$ $n=m=10^5$ 直接求不好求,改成矩阵乘法的形式: $a_{i}=M^x\times ...
随机推荐
- JS 获取本月第一天零点时间戳并转化成yy-mm-dd
JS 获取本月第一天零点时间戳并转化成yy-mm-dd 格式 <!DOCTYPE html> <html> <head> <meta charset=&quo ...
- python 单例实现
class View: _instance = None def __new__(cls, *args, **kwargs): if cls._instance is None: cls._insta ...
- Oracle问题整合
1.安装Oracle和ado.net连接Oracle 在“环境变量”的“系统变量”中[必须添加]: ORACLE_HOME = C:\instantclient_11_2 TNS_ADMIN = C: ...
- 程序到CPU的路径
汇编 源码->编译->CPU C/C++ 源码->编译->机器码->系统(执行)->CPU Java/.NET 源码->编译->J字节码->虚拟机 ...
- kaldi通用底层矩阵运算库——CUDA
cudamatrix/cublas-wrappers.h 该头文件对cuBLAS的接口进行了简单的封装(函数名的简化和部分kaldi函数的封装). 比如 cublasSgemm_v2封装为cublas ...
- SQL server 数据库中插入中文变???格式乱码的问题另一种容易忽略的情况(C#操作dapper)
1.先查查 VS2015 中的XXX.cs页面中编码格式,记事本打开另存一下,编码格式可能是ANSI改为unioncode. (中文前面加N或者改排序规则解决不了的情况有可能是以上原因.)
- HDU - 1036
题意描述很垃圾,后来看别人代码才知道怎么回事:对(题目所给d/总时间:所有时间加起来)四舍五入并取整,然后对结果/60得到用了几分钟:对结果%60得到用了几秒. presentation error一 ...
- 微信中音乐播放在ios不能自动播放解决
在微信中,ios手机下面音乐被自动禁掉无法自动播放,我们可以执行触发body上的元素,自动进行播放. //音乐 var x = document.getElementById("myAudi ...
- 题解-BJOI2019 光线
Problem loj3093 & x谷 题意概要:给定 \(n\) 块玻璃,每块玻璃有其折射比例与反射比例(折射比例+反射比例 不一定为 \(100\%\)),求从最上头打下一束光,有多少比 ...
- oracle,mysql,sql server三大数据库的事务隔离级别查看方法
1:mysql的事务隔离级别查看方法 mysql 最简单,执行这条语句就行:select @@tx_isolation 详情: 1.查看当前会话隔离级别 select @@tx_isolation; ...