Problem Statement

We have a grid with H rows and W columns. At first, all cells were painted white.

Snuke painted N of these cells. The i-th ( 1≤iN ) cell he painted is the cell at the ai-th row and bi-th column.

Compute the following:

  • For each integer j ( 0≤j≤9 ), how many subrectangles of size 3×3 of the grid contains exactly j black cells, after Snuke painted N cells?

Constraints

  • 3≤H≤109
  • 3≤W≤109
  • 0≤Nmin(105,H×W)
  • 1≤aiH (1≤iN)
  • 1≤biW (1≤iN)
  • (ai,bi)≠(aj,bj) (ij)

Input

The input is given from Standard Input in the following format:

H W N
a1 b1
:
aN bN

Output

Print 10 lines. The (j+1)-th ( 0≤j≤9 ) line should contain the number of the subrectangles of size 3×3 of the grid that contains exactly j black cells.

Sample Input 1

4 5 8
1 1
1 4
1 5
2 3
3 1
3 2
3 4
4 4

Sample Output 1

0
0
0
2
4
0
0
0
0
0

There are six subrectangles of size 3×3. Two of them contain three black cells each, and the remaining four contain four black cells each.

Sample Input 2

10 10 20
1 1
1 4
1 9
2 5
3 10
4 2
4 7
5 9
6 4
6 6
6 7
7 1
7 3
7 7
8 1
8 5
8 10
9 2
10 4
10 9

Sample Output 2

4
26
22
10
2
0
0
0
0
0

Sample Input 3

1000000000 1000000000 0

Sample Output 3

999999996000000004
0
0
0
0
0
0
0
0
0 题意:
给定一个高为h,宽为w的矩阵,然后给你n个黑色块的坐标。
让你求出所有大小为3*3的矩阵分别包含了多少个黑色块,
你只需要输出含有0~9个黑色块的个数的矩阵数量分别是多少。 思路:
由于h和w的数量很大,没有办法进行直接标记模拟。、
我们思考如下:每一个黑色的方块只会对9个3*3的矩阵有贡献。 看图:

看图可以知道,蓝色圆圈的位置如果是黑色块,可以对以红色点为左上角起点的3*3的区间有贡献。

那么我们对每一个黑色块算出的一共9个的贡献矩阵,全部加入到一个数组中,排序后处理答案即可。

细节见代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define rt return
#define dll(x) scanf("%I64d",&x)
#define xll(x) printf("%I64d\n",x)
#define sz(a) int(a.size())
#define all(a) a.begin(), a.end()
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define db(x) cout<<"== [ "<<x<<" ] =="<<endl;
using namespace std;
typedef long long ll;
ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
ll lcm(ll a,ll b){return a/gcd(a,b)*b;}
ll powmod(ll a,ll b,ll MOD){ll ans=;while(b){if(b%)ans=ans*a%MOD;a=a*a%MOD;b/=;}return ans;}
inline void getInt(int* p);
const int maxn=;
const int inf=0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
struct node
{
ll x,y;
}a[maxn];
ll n;
ll h,w;
ll xx[]={-,-,-,-,-,-,,,};
ll yy[]={-,-,,-,-,,-,-,};
ll ans[];
ll mod=1e9+;
int main()
{
//freopen("D:\\common_text\\code_stream\\in.txt","r",stdin);
//freopen("D:\\common_text\\code_stream\\out.txt","w",stdout);
gbtb;
cin>>h>>w>>n;
repd(i,,n)
{
cin>>a[i].x>>a[i].y;
}
vector<ll> v;
repd(i,,n)
{
repd(j,,)
{
ll x=a[i].x+xx[j];
ll y=a[i].y+yy[j];
if(x>=&&x+<=h&&y>=&&y+<=w)
{
// cout<<x<<" "<<y<<endl;
ll num=(x)*mod+y;
v.push_back(num);
}
}
}
sort(ALL(v));
v.push_back(-9ll);
ll ww=1ll;
ll ans0=(h-2ll)*(w-2ll);
for(int i=;i<v.size()-;i++)
{
// db(v[i]);
if(v[i]==v[i+])
{
ww++;
}else
{
ans[ww]++;
ww=1ll;
ans0--;
}
}
cout<<ans0<<endl;
repd(i,,)
{
cout<<ans[i]<<endl;
} return ;
} inline void getInt(int* p) {
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '');
while ((ch = getchar()) >= '' && ch <= '') {
*p = *p * - ch + '';
}
}
else {
*p = ch - '';
while ((ch = getchar()) >= '' && ch <= '') {
*p = *p * + ch - '';
}
}
}

すぬけ君の塗り絵 / Snuke's Coloring AtCoder - 2068 (思维,排序,贡献)的更多相关文章

  1. ARC063F すぬけ君の塗り絵 2 / Snuke's Coloring 2

    题面 一句话题面:给你一些点,求这些点之中夹的最大的矩形周长.(考虑边界) Solution 首先是一个结论,答案矩形一定经过\(x=\frac{w}{2}\)或经过\(y=\frac{h}{2}\) ...

  2. [arc063]F.すぬけ君の塗り絵2

    因为这题考虑可以观察一个性质,答案的下界为 \(2×(max(w,h)+1)\), 因为你至少可以空出一行或一列,因此这个矩形一定会经过 \(x=\frac{w}{2}\) 或 \(y=\frac{h ...

  3. [Arc063F] Snuke's Coloring 2

    [Arc063F] Snuke's Coloring 2 题目大意 给你一个网格图,一些点上有标记,求边长最大空白矩形. 试题分析 专门卡\(\log^2 n\)系列. 首先由题意我们可以找到答案的下 ...

  4. AtCoder Regular Contest 063 F : Snuke’s Coloring 2 (线段树 + 单调栈)

    题意 小 \(\mathrm{C}\) 很喜欢二维染色问题,这天他拿来了一个 \(w × h\) 的二维平面 , 初始时均为白色 . 然后他在上面设置了 \(n\) 个关键点 \((X_i , Y_i ...

  5. 2018.09.22 atcoder Snuke's Coloring 2(线段树+单调栈)

    传送门 就是给出一个矩形,上面有一些点,让你找出一个周长最大的矩形,满足没有一个点在矩形中. 这个题很有意思. 考虑到答案一定会穿过中线. 于是我们可以把点分到中线两边. 先想想暴力如何解决. 显然就 ...

  6. 2018.09.19 atcoder Snuke's Coloring(思维题)

    传送门 谁能想到这道题会写这么久. 本来是一道很sb的题啊. 就是每次选一个点只会影响到周围的九个方格,随便1e9进制就可以hash了,但是我非要作死用stl写. 结果由于技术不够高超,一直调不出来. ...

  7. 【ARC 063F】Snuke's Coloring 2

    Description There is a rectangle in the xy-plane, with its lower left corner at (0,0) and its upper ...

  8. atcoder C - Snuke and Spells(模拟+思维)

    题目链接:http://agc017.contest.atcoder.jp/tasks/agc017_c 题解:就是简单的模拟一下就行.看一下代码就能理解 #include <iostream& ...

  9. Snuke's Coloring 2-1

    There is a rectangle in the xy-plane, with its lower left corner at (0,0) and its upper right corner ...

随机推荐

  1. shell编程练习(二): 笔试11-20

    笔试练习(二): 11.写一个shell脚本来得到当前的日期,时间,用户名和当前工作目录. [root@VM_0_5_centos test]# vi 11.sh [root@VM_0_5_cento ...

  2. [Go] go get获取官方库被墙解决

    1.直接在github上clone对应的代码 , 地址为: https://github.com/golang/xxxxxxx.git xxxxxxx为所缺的库名  , 比如net库  text库 h ...

  3. Yii2基本概念之——配置(Configurations)

    在Yii中创建新对象或者初始化已经存在的对象广泛的使用配置,配置通常包含被创建对象的类名和一组将要赋值给对象的属性的初始值,这里的属性是Yii2的属性.还可以在对象的事件上绑定事件处理器,或者将行为附 ...

  4. Linux设备驱动之IIO子系统——Triggered buffer support触发缓冲支持

    Triggered buffer support触发缓冲支持 在许多数据分析应用中,能够基于某些外部信号(触发器)捕获数据是比较有用的. 这些触发器可能是: 数据就绪信号 连接到某个外部系统的IRQ线 ...

  5. C++语法小技巧

    前言 写的很乱,各种内容都有.仅仅是为了记录一下 而且内容极其不严谨(没错,只有实践,没有理论)!请各位谨慎驾驶! 强制内联 #define Inline __inline__ __attribute ...

  6. Dynamics 365 POA表记录的产生

    微软动态CRM专家罗勇 ,回复314或者20190311可方便获取本文,同时可以在第一间得到我发布的最新博文信息,follow me!我的网站是 www.luoyong.me . 前面的博文 Dyna ...

  7. 从头认识一下docker-附带asp.net core程序的docker化部署

    从头认识一下docker-附带asp.net core程序的docker化部署 简介 在计算机技术日新月异的今天, Docker 在国内发展的如火如荼,特别是在一线互联网公司, Docker 的使用是 ...

  8. Mybatis从认识到了解

    目录 MyBatis的介绍 介绍: 为什么选择MyBatis: 与Hibernate的对比: MyBatis的优点: 入门示例 Mybatis核心组件 四大核心组件 SqlSessionFactory ...

  9. 从0开始的Python学习006流程控制

    流程控制语句 Python中有三种控制流程语句: if.for.和while. if语句 使用if语句来校验一个条件,如果条件为真(True),运行if-块,如果为假(False),运行else-块. ...

  10. Linux内核的冷热缓存

    缓存为什么会有冷热? 究其原因,是因为对于内存的访问,可能是CPU发起的,也可以是DMA设备发起的. 如果是CPU发起的,在CPU的硬件缓存中,就会保存相应的页内容.如果这个页本来没有存在于硬件缓存中 ...