可持久化 $trie$  ....又是一个表里不一的东西.....

可持久化 $trie$  的介绍:

和主席树类似的,其实可持久化就是体现在前缀信息的维护上(搞不懂这怎么就叫做可持久化了...)

$trie$ (字典树)大家应该都知道,就是一棵用来做字符串匹配的树,

但是!在这里,可持久化 $trie$ 就是完全不一样的东西了...

基本上(我做过的题),可持久化都是用来维护  $XOR$   信息的...

比如说求某个范围内的最大区间异或和之类的,至于到了树上嘛,你懂的.


可持久化 $trie$  的实现:

还是和主席树类似的,可持久化 $trie$   就是要你在一棵树上(由于是异或,数字都会变成二进制,值只有 0 和 1 两种表示,于是这棵树自然就是二叉树了)维护每个前缀出现的次数(这里就是类似 trie 的做法)

哎...相信你是没有看懂的...于是边看代码边自己感性理解一下吧....


可持久化 $trie$ 的代码实现:

这其实是一道板子题的代码...

大体思路就是和主席树差不多,如果当前处理到了 0 ,那么 当前节点的  1  的孩子直接调用  las  所指向的孩子 1  就好了,

然后当前节点 和 las 节点都跳向 0 这个孩子,并且处理的这个过程是从高位到低位的(以符合查询时贪心的思想)

每次更新都是新增 30 (一般来说是这样,具体得看题目的数据范围) 个节点,所以不会炸

代码如下:

 //by Judge
#include<iostream>
#include<cstdio>
using namespace std;
const int M=3e7+;
inline int read(){
int x=,f=; char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=-;
for(;isdigit(c);c=getchar()) x=x*+c-''; return x*f;
}
inline int cread(){
char c=getchar(); while(c!='Q' && c!='A') c=getchar(); return c^'Q';
}
int n,m,cnt;
int rt[M],son[M][],d[],sum[M];
inline void split(int k){
int i,len=;
while(k) d[++len]=k&,k>>=;
for(int i=len+;i<=;++i) d[i]=;
}
inline void update(int& now,int las){
sum[now=++cnt]=sum[las]+;
int i,tmp=now;
for(i=;i;--i){
son[tmp][d[i]^]=son[las][d[i]^],
son[tmp][d[i]]=++cnt,las=son[las][d[i]],
sum[tmp=cnt]=sum[las]+;
}
}
inline int query(int u,int v){
int ans=,i;
for(i=;i;--i){
if(sum[son[v][d[i]^]]-sum[son[u][d[i]^]]>)
ans|=(<<i-),u=son[u][d[i]^],v=son[v][d[i]^];
else u=son[u][d[i]],v=son[v][d[i]];
} return ans;
}
int main(){
int sum=,x,opt,l,r;
n=read(),m=read(),++n;
split(),update(rt[],rt[]);
for(int i=;i<=n;++i)
split(sum^=x=read()),
update(rt[i],rt[i-]);
for(int i=;i<=m;++i){
opt=cread();
if(opt)
split(sum^=x=read()),
update(rt[n+],rt[n]),++n;
else
l=read(),r=read(),x=read(),split(x^sum),
printf("%d\n",query(rt[l-],rt[r]));
} return ;
}

view code


可持久化 $trie$  的例题:

其实上面已经是一道了。

然后这道(树上搞事情)的题:Tree

其实树上 可持久化 trie  和树上主席树类似,就是当前节点调用的 las 节点变成了该节点的父节点,查询的时候也是和树上主席树类似的套路,

这里和树上主席树一样是要查询  LCA  的,我们用树剖维护即可(而且还可以在树剖时维护每个节点的可持久化信息)

代码如下:

 //by Judge
#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
const int M=1e5+;
inline int read(){
int x=,f=; char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=-;
for(;isdigit(c);c=getchar()) x=x*+c-''; return x*f;
}
int n,m,pat,cnt;
int head[M],d[],rt[M],to[M<<][],sum[M<<];
int val[M],siz[M],dep[M],top[M],f[M],son[M];
struct Edge{
int to,next;
Edge(int to,int next): to(to),next(next){} Edge(){}
}e[M<<];
inline void add(int u,int v){
e[++pat]=Edge(v,head[u]),head[u]=pat;
e[++pat]=Edge(u,head[v]),head[v]=pat;
}
/************* 模板 ********************/
inline void split(int k){
int len=,i;
while(k) d[++len]=k&,k>>=;
for(i=len+;i<=;++i) d[i]=;
}
inline void update(int& root,int las){
int now=root=++cnt;
sum[now]=sum[las]+;
for(int i=;i;--i){
to[now][d[i]^]=to[las][d[i]^],
to[now][d[i]]=++cnt,las=to[las][d[i]],
now=cnt,sum[now]=sum[las]+;
}
}
#define v e[i].to
void dfs1(int u,int fa){
siz[u]=,son[u]=top[u]=;
split(val[u]),update(rt[u],rt[fa]);
for(int i=head[u];i;i=e[i].next) if(v!=fa){
f[v]=u,dep[v]=dep[u]+,dfs1(v,u),siz[u]+=siz[v];
if(siz[v]>siz[son[u]]) son[u]=v;
}
}
void dfs2(int u){
if(!top[u]) top[u]=u; if(!son[u]) return ;
top[son[u]]=top[u],dfs2(son[u]);
for(int i=head[u];i;i=e[i].next)
if(v!=son[u] && v!=f[u]) dfs2(v);
}
#undef v
inline int LCA(int u,int v){
while(top[u]^top[v])
dep[top[u]]>dep[top[v]]?u=f[top[u]]:v=f[top[v]];
return dep[u]<dep[v]?u:v;
}
/* 程序 */
inline int query(int u,int v,int lca,int f_lca){
int ans=;
for(int i=;i;--i){
if(sum[to[u][d[i]^]]+sum[to[v][d[i]^]]-sum[to[lca][d[i]^]]-sum[to[f_lca][d[i]^]])
ans|=(<<i-),u=to[u][d[i]^],v=to[v][d[i]^],lca=to[lca][d[i]^],f_lca=to[f_lca][d[i]^];
else u=to[u][d[i]],v=to[v][d[i]],lca=to[lca][d[i]],f_lca=to[f_lca][d[i]];
} return ans;
}
int x,y,z,lca;
inline void query(){
x=read(),y=read(),z=read(),lca=LCA(x,y),split(z);
printf("%d\n",query(rt[x],rt[y],rt[lca],rt[f[lca]]));
}
int main(){
while(~scanf("%d%d",&n,&m)){
pat=cnt=,memset(head,,sizeof(head));
for(int i=;i<=n;++i) val[i]=read();
for(int i=,u,v;i<n;++i)
u=read(),v=read(),add(u,v);
dfs1(,),dfs2(); while(m--) query();
} return ;
}

然后就是这题(TM做了我一晚上就在那里 TLE、 MLE 、WA  各种挂): L

这道题...够恶心的,又是区间内询问区间...

而且更恶心的是,你要用分块的算法去优化算法...难以想到(其实打起来也还好)

$a[i]$   代表 1 ~ i 的 前缀异或和

$f[i][j]$  代表以第 i * block 这个位置开始,到 j-1 结束的区间内的前缀异或和中,与 a[j]  异或的最大值

代码如下:

 //by Judge
#include<cmath>
#include<cstdio>
#include<iostream>
#define ll long long
using namespace std;
const int M=;
char buf[<<],*p1,*p2;
#define getchar() (p1==p2 && (p2=(p1=buf)+fread(buf,1,1<<20,stdin),p1==p2)?EOF:*p1++)
inline int read(){
int x=,f=; char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=-;
for(;isdigit(c);c=getchar()) x=x*+c-''; return x*f;
}
char sr[<<],z[];int C=-,Z;
inline void Ot(){fwrite(sr,,C+,stdout),C=-;}
inline void print(ll x){
if(C><<)Ot();if(x<)sr[++C]=,x=-x;
while(z[++Z]=x%+,x/=);
while(sr[++C]=z[Z],--Z);sr[++C]='\n';
}
int n,m,block,cnt,a[M<<],f[][M];
int d[],rt[M<<],to[M<<][],sum[M<<];
inline void split(int k){
int len=; while(k) d[++len]=k&,k>>=;
for(int i=len+;i<=;++i) d[i]=;
}
inline void update(int& root,int las){
int now=root=++cnt; sum[now]=sum[las]+;
for(int i=;i;--i){
to[now][d[i]^]=to[las][d[i]^];
to[now][d[i]]=++cnt,las=to[las][d[i]];
sum[now=cnt]=sum[las]+;
}
}
inline ll query(int u,int v){
ll ans=;
for(int i=;i;--i){
if(sum[to[v][d[i]^]]-sum[to[u][d[i]^]])
ans|=1ll<<i-,u=to[u][d[i]^],v=to[v][d[i]^];
else u=to[u][d[i]],v=to[v][d[i]];
} return ans;
}
int main(){
n=read(),m=read(),update(rt[],); int x,y,l,r,s,i,j; ll ans=;
for(i=;i<=n;++i) a[i]=read()^a[i-],split(a[i]),update(rt[i],rt[i-]);
for(block=(int)sqrt(n+)+,i=;i<=n;i+=block) for(j=i+;j<=n;++j)
split(a[j]),f[i/block][j]=max(1ll*f[i/block][j-],query(i?rt[i-]:,rt[j-]));
while(m--){
x=read(),y=read(),
r=max((1ll*x+ans)%n+,(1ll*y+ans)%n+),
s=l=min((1ll*x+ans)%n+,(1ll*y+ans)%n+)-;
while(s%block && s<r) ++s;
if(s==r){
for(ans=,j=l+;j<=r;++j)
split(a[j]),ans=max(ans,query(l?rt[l-]:,rt[j-]));
} else{
for(ans=f[s/block][r],j=s-;j>=l;--j)
split(a[j]),ans=max(ans,query(rt[j],rt[r]));
} print(ans);
} Ot(); return ;
}

其实这是一道省选题(已填坑): Alo

题目说的就是要找出一个区间,让该区间内的次大值异或上区间内的任意一个数,使得异或和最大

坑... set 来维护已出现的下标,但是在使用 set 前居然要加入 -1、-2、inf、inf+1 四个元素...

以防止访问越界的情况(我们是依次枚举那个次大值,然后要找到前、后比他大的第二近的元素下标,也就是说容易越界)

然后这里还是要用到可(e)爱(xin)的前缀异或和

代码如下:

//by Judge
#include<algorithm>
#include<iostream>
#include<cstdio>
#include<set>
using namespace std;
const int M=1e5+;
const int inf=1e9+;
char buf[<<],*p1,*p2;
#define getchar() (p1==p2 && (p2=(p1=buf)+fread(buf,1,1<<20,stdin),p1==p2)?EOF:*p1++)
inline int read(){
int x=,f=; char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=-;
for(;isdigit(c);c=getchar()) x=x*+c-''; return x*f;
}
int n,cnt,ans; set<int> q;
int d[],rt[M],sum[M<<],son[M<<][];
struct Node{ int id,val; }a[M];
inline bool operator <(Node& a,Node& b){
return a.val>b.val;
}
inline void split(int k){
int len=; while(k) d[++len]=k&,k>>=;
for(int i=len+;i<=;++i) d[i]=;
}
inline void update(int& nw,int las){
int now=nw=++cnt; sum[now]=sum[las]+;
for(int i=;i;--i){
son[now][d[i]^]=son[las][d[i]^];
son[now][d[i]]=++cnt,las=son[las][d[i]];
sum[now=cnt]=sum[las]+;
}
}
inline int query(int u,int v){
int ans=; for(int i=;i;--i){
if(sum[son[v][d[i]^]]-sum[son[u][d[i]^]])
ans|=(<<i-),u=son[u][d[i]^],v=son[v][d[i]^];
else u=son[u][d[i]],v=son[v][d[i]];
} return ans;
}
int main(){
n=read(); for(int i=;i<=n;++i) a[i].val=read(),a[i].id=i;
for(int i=;i<=n;++i) split(a[i].val),update(rt[i],rt[i-]);
q.insert(-),q.insert(inf),q.insert(-),q.insert(inf+),
sort(a+,a++n),q.insert(a[].id);
for(int i=;i<=n;++i){
int l=a[i].id,r=a[i].id,x=a[i].id;
set<int>::iterator t,p; t=p=q.lower_bound(x);
++t,r=*t-,--p,--p,l=*p+,l=max(,l),r=min(r,n),q.insert(x);
if(l^r) split(a[i].val),ans=max(ans,query(rt[l-],rt[r]));
} printf("%d\n",ans); return ;
}

这里用的就是set ,不过你手打 splay 也是没问题的

emmmmm...可持久化 trie 的题还是蛮少的...

可持久化 trie 的简单入门的更多相关文章

  1. 可持久化trie 学习总结

    QAQ 以前一直觉得可持久化trie很难,今天强行写了一发觉得还是蛮简单的嘛 自己的模板是自己手写的,写了几道题目并没有出过错误 THUSC的第二题的解法五貌似就是可持久化trie,时间复杂度O(60 ...

  2. 可持久化trie学习笔记

    其实很早之前就想学习可持久化trie,不过由于换队友等情况,还是优先去学数论和计算几何,今天突然心血来潮学了一发可持久化trie,感觉还是蛮简单的,不过由于自己很长时间没写过可持久化了,都快忘了是个什 ...

  3. Vue的简单入门

    Vue的简单入门 一.什么是Vue? vue.js也一个渐进式JavaScript框架,可以独立完成前后端分离式web项目 渐进式:vue可以从小到控制页面中的一个变量后到页面中一块内容再到整个页面, ...

  4. 可持久化Trie

    ---恢复内容开始--- HAOI 2019 DAY1 T1 我爆零了. 爆零的感觉很难受 原因竟然是我从没犯过的错误 审题不清.情绪低迷. 也许 也许 也许就是想让我知道我有多菜吧. 求前k大的区间 ...

  5. HDU.4757.Tree(可持久化Trie)

    题目链接 \(Description\) 给定一棵树,点有点权.\(Q\)次询问\(x,y,z\),求\(x\)到\(y\)的简单路径中,与\(z\)异或能得到的最大的数是多少. \(Solution ...

  6. bzoj3261: 最大异或和 可持久化trie

    题意:给定一个非负整数序列{a},初始长度为N. 有M个操作,有以下两种操作类型: 1.Ax:添加操作,表示在序列末尾添加一个数x,序列的长度N+1. 2.Qlrx:询问操作,你需要找到一个位置p,满 ...

  7. [转]Scrapy简单入门及实例讲解

    Scrapy简单入门及实例讲解 中文文档:   http://scrapy-chs.readthedocs.io/zh_CN/0.24/ Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用 ...

  8. 【xsy1214】 异或路径(xorpath) 点分治+可持久化trie

    题目大意:给你一棵$n$个点的树,每个点有一个点权$x$,问你所有路径中点权异或和最大的路径的异或和 数据范围:$n≤30000$,$x≤2^{31}-1$. 如果是边上有点权的话非常简单,直接一个$ ...

  9. CQRS简单入门(Golang)

    一.简单入门之入门 CQRS/ES和领域驱动设计更搭,故整体分层沿用经典的DDD四层.其实要实现的功能概要很简单,如下图. 基础框架选择了https://github.com/looplab/even ...

随机推荐

  1. WPF防止界面卡死并显示加载中效果

    原文:WPF防止界面卡死并显示加载中效果 网上貌似没有完整的WPF正在加载的例子,所以自己写了一个,希望能帮到有需要的同学 前台: <Window x:Class="WpfApplic ...

  2. java常识

    什么是java语言? java语言是美国Sun公司,在1995年推出的高级编程语言.所谓编程语言,是计算机的语言,人们可以使用编程语言对计算机下达命令,让计算机完成人们需要的功能. java语言发展历 ...

  3. day05(数字类型,字符串类型,列表类型)

    一,复习: 1.顺序结构.分支结构.循环结构 2.if分支结构 if 条件: 代码块 elif 条件: 代码块 else: 代码块 # 可以被if转换为False:0 | '' | None | [] ...

  4. Merge Sort(Java)

    public static void main(String[] args) { Scanner input = new Scanner(System.in); int n = input.nextI ...

  5. 一键分享代码(提供能分享到QQ空间、新浪微博、人人网等的分享功能)

    <html> <head></head> <body> <div class="xl_2"> <span styl ...

  6. Linux程序宕掉后如何通过gdb查看出错信息

    我们在编写服务端程序的时候,由于多线程并且环境复杂,程序可能在不确定条件的情况下宕掉,还不好重新,这是我们如何获取程序的出错信息,一种方法通过打日志,有时候一些错误日志也不能体现出来,这时就用到我们的 ...

  7. springboot 打war

    pom.xml <packaging>war</packaging> <!-- 打包设置 --> <plugins> <plugin> &l ...

  8. UVA 1627 Team them up!

    https://cn.vjudge.net/problem/UVA-1627 题目 有n(n≤100)个人,把他们分成非空的两组,使得每个人都被分到一组,且同组中的人相互认识.要求两组的成员人数尽量接 ...

  9. elastalert 配置post告警方式(备忘)

      最近在做把elk告警日志发送到kinesis 流,供后续数据分析处理使用........ 基于尽量不修改elastalert ,把修改工作放到接收端服务的原则.计划把elk的告警数据通过远程api ...

  10. 微信小程序wepy框架开发资源汇总

    开源项目 wepy-wechat-demo:基于wepy开发的仿微信聊天界面小程序 深大的树洞:基于wepy开发的树洞类微信小程序 wepy-demo-bookmall:微信小程序