飞镖(bzoj 2335)
Description
飞镖是在欧洲颇为流行的一项运动。它的镖盘上分为20个扇形区域,分别标有1到20的分值,每个区域中有单倍、双倍和三倍的区域,打中对应的区域会得到分值乘以倍数所对应的分数。例如打中18分里面的三倍区域,就会得到54分。另外,在镖盘的中央,还有“小红心”和“大红心”,分别是25分和50分。
通常的飞镖规则还有一条,那就是在最后一镖的时候,必须以双倍结束战斗,才算获胜。也就是说,当还剩12分的时候,必须打中双倍的6才算赢,而打中单倍的12或者三倍的4则不算。特别的,“大红心”也算双倍(双倍的25)。在这样的规则下,3镖能解决的最多分数是170分(两个三倍的20,最后用大红心结束)。
现在,lxhgww把原来的1到20分的分值变为了1到K分,同时把小红心的分数变为了M分(大红心是其双倍),现在lxhgww想知道能否在3镖内(可以不一定用满3镖)解决X分。同样的,最后一镖必须是双倍(包括大红心)。
Input
Output
一行,包括一个数字,表示这T组数据中,能够被解决的数据数目。
Sample Input
1 2 2 10 20
1 3 2 15 25
2 2 5 200 170
Sample Output
HINT
1<=T<=1000000,20<=K1,M1,X1,D1,D2,D3<=10^9
0<=A1,B1,C1,A2,B2,C2,A3,B3,c3<=10^9
/*
首先我们抛开m不论。
不难发现一个性质:两次分别选择2*k,3*k,就可以凑出2*k+3*k以内除了2*k+3*k-1以外所有的数。
证明起来很简单,要凑2*k+3*k-1,就必须得用2*(k+1)+3*(k-1),可是k+1超过了范围,不合法。
2*k+3*k-2,即2*(k-1)+3*k.
2*k+3*k-3,即2*k+3*(k-1).
2*k+3*k-4,即2*(k-1)+3*k.
2*k+3*k-5,即2*(k-1)+3*(k-1).
此后每5个数即为一次循环,都能够凑出来(1是特例,但可以直接用一次1*1得到,所以不用在意)
那么能凑出比2*k+3*k还大的数,就只能选3*a+3*b这种方式,这种方式能凑出来的数规律很显然,即为3的倍数,且小于等于3*k+3*k。
所以,对于任何一个数,用这两种方式凑都是最优的。
因此,我们将x-2*k,看是否可以用2*a+3*b来凑
并且找到x-2*k1,为k1<=k且x-2*k1为3的倍数,看是否可以用3*k+3*k来凑 那么现在加入m
总结一下,有m参与的共计有11种情况:
(i表示选1-k中的数,乘的倍数不论,竖线后为最后一次,前两次操作的顺序随意)
①m i | i
②2m i | i
③m m | i
④m 2m | i
⑤2m 2m | i
⑥i i | 2m
⑦m i | 2m
⑧2m i | 2m
⑨m m | 2m
⑩m 2m | 2m
?2m 2m |2m
将m与2m看做同一种数,可以将1,2归为一类,记为A
3,4,5归为一类,记为B
6单独为一类,记为C
7,8为一类,记为D
9,10,11为一类,记为E
对于A类,只需要将x-m或2m,因为最后一次必为2*a,所以用2*a+3*b的方法判定即可
(注意!这里x-m,x-2m不可为0!因为题目要求的是从1-k内的数中选,如果m==x就会出现不合法的局面)
对于B类,将x-2m(m+m)或3m(m+2m)或4m(2m+2m),看剩下的数是否为2的倍数且在2*k范围内
对于C类,将x-2m后,看能否用2*a+3*b,或者3*a+3*b的方法即可
对于D类 ,将x-2m或3m后,是否为1-k中某个数本身或2倍,3倍
对于E类,直接看x是否等于4m,5m,6m。
*/
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int t;
long long tot,a[],b[],c[],d[],k,m,x,k1,m1,x1;
bool check1(){
long long kx=k;
if(x-k*<=k*+k*&&x-k*!=k*+k*-) return ;
while((x-kx*)%!=) kx--;
if((x-kx*)<=k*) return ;
return ;
}
bool check2(long long xx){
if(xx<) return ;
if(xx<=k*+k*&&xx!=k*+k*-) return ;
return ;
}
bool check3(long long xx){
if(xx>=&&xx%==&&xx/<=k) return ;
return ;
}
bool check4(long long xx){
if(xx<) return ;
long long kx=k;
if(xx<=k*+k*&&xx!=k*+k*-) return ;
if(xx%==&&xx<=k*) return ;
return ;
}
bool check5(long long xx){
if(xx<) return ;
if(xx%==&&xx/<=k) return ;
if(xx%==&&xx/<=k) return ;
if(xx<=k) return ;
return ;
}
int main(){
scanf("%d",&t);
scanf("%lld%lld%lld%lld%lld",&a[],&b[],&c[],&d[],&k);
scanf("%lld%lld%lld%lld%lld",&a[],&b[],&c[],&d[],&m);
scanf("%lld%lld%lld%lld%lld",&a[],&b[],&c[],&d[],&x);
for(int i=;i<=t;i++){
if(check1()) tot++;
else if(check2(x-m)||check2(x-*m)) tot++;
else if(check3(x-*m)||check3(x-*m)||check3(x-*m)) tot++;
else if(check4(x-*m)) tot++;
else if(check5(x-*m)||check5(x-*m)) tot++;
else if(x==*m||x==*m||x==*m) tot++;
k1=(k*k)%d[];
k=((k1*a[])%d[]+(k*b[])%d[]+c[])%d[];
m1=(m*m)%d[];
m=((m1*a[])%d[]+(m*b[])%d[]+c[])%d[];
x1=(x*x)%d[];
x=((x1*a[])%d[]+(x*b[])%d[]+c[])%d[];
k+=;m+=;x+=;
}
printf("%lld",tot);
return ;
}
飞镖(bzoj 2335)的更多相关文章
- [SCOI2011]飞镖[数学模拟]
2335: [SCOI2011]飞镖 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 482 Solved: 152[Submit][Status][ ...
- bzoj AC倒序
Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...
- BZOJ 2127: happiness [最小割]
2127: happiness Time Limit: 51 Sec Memory Limit: 259 MBSubmit: 1815 Solved: 878[Submit][Status][Di ...
- BZOJ 3275: Number
3275: Number Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 874 Solved: 371[Submit][Status][Discus ...
- BZOJ 2879: [Noi2012]美食节
2879: [Noi2012]美食节 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1834 Solved: 969[Submit][Status] ...
- bzoj 4610 Ceiling Functi
bzoj 4610 Ceiling Functi Description bzoj上的描述有问题 给出\(n\)个长度为\(k\)的数列,将每个数列构成一个二叉搜索树,问有多少颗形态不同的树. Inp ...
- BZOJ 题目整理
bzoj 500题纪念 总结一发题目吧,挑几道题整理一下,(方便拖板子) 1039:每条线段与前一条线段之间的长度的比例和夹角不会因平移.旋转.放缩而改变,所以将每条轨迹改为比例和夹角的序列,复制一份 ...
- 【sdoi2013】森林 BZOJ 3123
Input 第一行包含一个正整数testcase,表示当前测试数据的测试点编号.保证1≤testcase≤20. 第二行包含三个整数N,M,T,分别表示节点数.初始边数.操作数.第三行包含N个非负整数 ...
- 【清华集训】楼房重建 BZOJ 2957
Description 小A的楼房外有一大片施工工地,工地上有N栋待建的楼房.每天,这片工地上的房子拆了又建.建了又拆.他经常无聊地看着窗外发呆,数自己能够看到多少栋房子. 为了简化问题,我们考虑这些 ...
随机推荐
- 再次写给VC++ Windows开发者
距离我的上一篇文章--写给VC++ Windows开发的初学者已经4年多时间过去了,感慨于时光如梭之余,更感慨于这么多年来(从1998年我初学VC 算起吧)到如今其实我仍然还只是个初学者而已.看看之前 ...
- (转)IDE 而言,是 Xcode 的技术比较先进还是 Visual Studio?
李如一他们弄得那个IT公论,最近有一期是吐槽ObjC的.吐到最后, @涛 吴 说,理想的用户界面语言应该是界面的描述和逻辑分开的,想了半天举不出例子来,其实说的不就是WPF吗?还在用Interface ...
- win7同时安装python2和python3
1.下载python2和python3版本. 2.安装python3 1>选择添加PATH路径到系统. 2>为所有用户安装python. 3.安装python2 1>为所 ...
- <Docker学习>2.Centos7安装docker
Docker CE 支持 64 位版本 CentOS 7,并且要求内核版本不低于 3.10. CentOS 7 满足最低内核的要求,但由于内核版本比较低,部分功能(如 overlay2 存储层驱动)无 ...
- PyCharm 的安装与入门操作
PyCharm是一种Python IDE,带有一整套可以帮助用户在使用Python语言开发时提高其效率的工具,比如调试.语法高亮.Project管理.代码跳转.智能提示.自动完成.单元测试.版本控制. ...
- lambda & 三元运算
lambda & 三元运算 lambda: 1 >>> def add(x,y): #定义一个加法函数 2 return x+y ...
- 2,Python常用库之二:Pandas
Pandas是用于数据操纵和分析,建立在Numpy之上的.Pandas为Python带来了两种新的数据结构:Pandas Series和Pandas DataFrame,借助这两种数据结构,我们能够轻 ...
- 3611: [Heoi2014]大工程
3611: [Heoi2014]大工程 链接 分析: 树形dp+虚树. 首先建立虚树,在虚树上dp. dp:sum[i]为i的子树中所有询问点之间的和.siz[i]为i的子树中有多少询问点,mn[i] ...
- BAD_ACCESS在什么情况下出现?如何调试BAD_ACCESS错误
1. 访问一个僵尸对象,访问僵尸对象的成员变量或者向其发消息 死循环 2. 设置全局断点快速定位问题代码所在行 开启僵尸对象调试功能
- KVO的底层实现原理?如何取消系统默认的KVO并手动触发?
KVO是基于runtime机制实现的 当某个类的属性对象第一次被观察时,系统就会在运行期动态地创建该类的一个派生类(该类的子类),在这个派生类中重写基类中任何被观察属性的setter 方法.派生类在被 ...