Description

每天,农夫John需要经过一些道路去检查牛棚N里面的牛.

农场上有M(1<=M<=50,000)条双向泥土道路,编号为1..M. 道路i连接牛棚P1_i和P2_i (1 <= P1_i <= N; 1 <= P2_i<= N).

John需要T_i (1 <= T_i <= 1,000,000)时间单位用道路i从P1_i走到P2_i或者从P2_i 走到P1_i

他想更新一些路经来减少每天花在路上的时间.具体地说,他想更新K (1 <= K <= 20)条路经,将它们所须时间减为0.

帮助FJ选择哪些路经需要更新使得从1到N的时间尽量少.

Input

* 第一行: 三个空格分开的数: N, M, 和 K * 第2..M+1行: 第i+1行有三个空格分开的数:P1_i, P2_i, 和 T_i

Output

* 第一行: 更新最多K条路经后的最短路经长度.

Sample Input

4 4 1
1 2 10
2 4 10
1 3 1
3 4 100

Sample Output

1

HINT

K是1; 更新道路3->4使得从3到4的时间由100减少到0. 最新最短路经是1->3->4,总用时为1单位. N<=10000

————————————————————————————————

感觉还是有必要发一篇题解吧 因为网上的代码都好复杂QAQ——其实只需要五六十行的样子

我们只要在正常的dijkstra上把数组d【i】(表示距离)转换成d【i】【j】表示从1走到i 在使用了 j 次变 0 技能后的最短路

之后的操作就和正常的dijkstra一样了 每次取最近的出堆更新其他结点就好了 等到 点n 出堆的时候就是答案了

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#define LL long long
using namespace std;
const int N=,inf=0x7f7f7f7f;
int read(){
int ans=,f=,c=getchar();
while(c<''||c>''){if(c=='-') f=-; c=getchar();}
while(c>=''&&c<=''){ans=ans*+(c-''); c=getchar();}
return ans*f;
}
int n,m,k;
int d[N][];
struct node{
int d,h,pos;
bool operator <(const node& x)const{return x.d<d;}
};
priority_queue<node>q;
int first[N],cnt;
struct pos{int to,next,w;}e[*N];
void ins(int a,int b,int w){e[++cnt]=(pos){b,first[a],w}; first[a]=cnt;}
void insert(int a,int b,int w){ins(a,b,w); ins(b,a,w);}
int dj(){
memset(d,0x7f,sizeof(d));
for(int i=;i<=k;i++) d[][i]=;
q.push((node){,,});
while(!q.empty()){
node p=q.top(); q.pop();
if(d[p.pos][p.h]!=p.d) continue;
if(p.pos==n) return p.d;
int x=p.pos,h=p.h;
for(int i=first[x];i;i=e[i].next){
int now=e[i].to;
if(d[now][h]>d[x][h]+e[i].w) d[now][h]=d[x][h]+e[i].w,q.push((node){d[now][h],h,now});
if(h<k&&d[now][h+]>d[x][h]) d[now][h+]=d[x][h],q.push((node){d[now][h+],h+,now});
}
}
return d[n][k];
}
int main()
{
int x,y,v;
n=read(); m=read(); k=read();
for(int i=;i<=m;i++) x=read(),y=read(),v=read(),insert(x,y,v);
printf("%d\n",dj());
return ;
}
 

bzoj 1579: [Usaco2009 Feb]Revamping Trails 道路升级——分层图+dijkstra的更多相关文章

  1. bzoj 1579: [Usaco2009 Feb]Revamping Trails 道路升级 -- 分层图最短路

    1579: [Usaco2009 Feb]Revamping Trails 道路升级 Time Limit: 10 Sec  Memory Limit: 64 MB Description 每天,农夫 ...

  2. BZOJ 1579: [Usaco2009 Feb]Revamping Trails 道路升级 分层图最短路 + Dijkstra

    Description 每天,农夫John需要经过一些道路去检查牛棚N里面的牛. 农场上有M(1<=M<=50,000)条双向泥土道路,编号为1..M. 道路i连接牛棚P1_i和P2_i ...

  3. Bzoj 1579: [Usaco2009 Feb]Revamping Trails 道路升级 dijkstra,堆,分层图

    1579: [Usaco2009 Feb]Revamping Trails 道路升级 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1573  Solv ...

  4. BZOJ 1579: [Usaco2009 Feb]Revamping Trails 道路升级( 最短路 )

    最短路...多加一维表示更新了多少条路 -------------------------------------------------------------------------------- ...

  5. bzoj 1579: [Usaco2009 Feb]Revamping Trails 道路升级 优先队列+dij

    1579: [Usaco2009 Feb]Revamping Trails 道路升级 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1768  Solv ...

  6. 【bzoj1579】[Usaco2009 Feb]Revamping Trails 道路升级 分层图最短路

    题目描述 每天,农夫John需要经过一些道路去检查牛棚N里面的牛. 农场上有M(1<=M<=50,000)条双向泥土道路,编号为1..M. 道路i连接牛棚P1_i和P2_i (1 < ...

  7. BZOJ 1579 [Usaco2009 Feb]Revamping Trails 道路升级:dijkstra 分层图【将k条边改为0】

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1579 题意: 给你一个无向图,n个点,m条边,每条边有边权w[i]. 你可以将其中的k(k ...

  8. bzoj 1579: [Usaco2009 Feb]Revamping Trails 道路升级【分层图+spfa】

    至死不用dijskstra系列2333,洛谷上T了一个点,开了O2才过 基本想法是建立分层图,就是建k+1层原图,然后相邻两层之间把原图的边在上一层的起点与下一层的终点连起来,边权为0,表示免了这条边 ...

  9. BZOJ 1579 [Usaco2009 Feb]Revamping Trails 道路升级

    堆优化的dijkstra. 把一个点拆成k个. 日常空间要开炸一次.. //Twenty #include<cstdio> #include<cstring> #include ...

随机推荐

  1. python——matplotlib图像的基本处理

    1.绘制图像中的点和线 from PIL import Image from pylab import * im = array(Image.open('E:\Python\meinv.jpg')) ...

  2. [CodeForces948D]Perfect Security(01字典树)

    Description 题目链接 Solution 01字典树模板题,删除操作用个数组记录下就行了 Code #include <cstdio> #include <algorith ...

  3. 17-比赛1 F - 较小元素 Weak in the Middle (set)

    Seg-El has last chance to make the final changes in order to prevent the destruction of Krypton. He ...

  4. AOP的两种实现方式

    技术交流群 :233513714 AOP,面向切面编程,可以通过预编译方式和运行期动态代理实现在不修改源代码的情况下给程序动态统一添加功能的一种技术.    Aspect Oriented Progr ...

  5. VS Extension+NVelocity系列(三)——让VS支持 NVelocity的智能提示(中)

    一.定义 我们知道,我们的插件是服务于NVelocity的,在你的项目当中,对于NVelocity的模板应当有一个统一的文件扩展名,以便于VS在打开指定扩展名的文件后,就能起到具体的作用. 如果我没有 ...

  6. 剑指Offer - 九度1503 - 二叉搜索树与双向链表

    剑指Offer - 九度1503 - 二叉搜索树与双向链表2014-02-05 23:39 题目描述: 输入一棵二叉搜索树,将该二叉搜索树转换成一个排序的双向链表.要求不能创建任何新的结点,只能调整树 ...

  7. DOS程序员手册(十五)

    837页 writeln('TRACING Current Buffer==='); holdup; bcbtrc(cvtbase^.curbfr); writeln; holdup ; writel ...

  8. 《数据结构》C++代码 线性表

    线性表,分数组和链表两种(官方名称记得是叫顺序存储和链式存储).代码里天天用,简单写写. 首先是数组,分静态.动态两种,没什么可说的,注意动态的要手动释放内存就好了. 其次是链表,依旧分静态.动态.课 ...

  9. apache的/etc/httpd/conf/httpd.conf和/usr/local/apache2/conf/httpd.conf区别

    一.问题 centos系统用yum安装完apache后,重启后有时会失效,然后去网上找资料,发现有的说重启命令是这样的: /etc/init.d/httpd restart 而有的呢,说重启命令应该是 ...

  10. script通过script标签跨域加载数据

    /********************************************************** 说明:跨域请求数据Javascript组件 ------------------ ...