Generalized Low Rank Approximation of Matrices
Generalized Low Rank Approximations of Matrices
JIEPING YE*jieping@cs.umn.edu
Department of Computer Science & Engineering,University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
Published online:12 August 2005
Abstract.The problem of computing low rank approximations of matrices is considered. The novel
aspect of our approach is that the low rank approximations are on a collection of matrices. We formulate this as an optimization problem, which aims to minimize the reconstruction (approximation) error. To the best of our knowledge, the optimization problem
proposed in this paper does not admit a closed form solution. We thus derive an iterative algorithm, namely GLRAM, which stands for the Generalized Low Rank Approximations of Matrices. GLRAM reduces the reconstruction error sequentially, and the resulting
approximation is thus improved during successive iterations. Experimental results show that the algorithm converges rapidly.
We have conducted extensive experiments on image data to evaluate the effectiveness of the proposed algorithm and compare
the computed low rank approximations with those obtained from traditional Singular Value Decomposition (SVD) based methods. The comparison is based on the reconstruction error, misclassification error rate,and computation time. Results show that GLRAM is competitive
with SVD for classification, while it has a muchlower computation cost. However, GLRAM results in a larger reconstruction error than SVD. To further reduce the reconstruction error, we study the combination of GLRAM and SVD, namely GLRAM + SVD, where SVD is
repreceded by GLRAM. Results show that when using the same number of reduced dimensions, GLRAM+SVD achievessignificant
reduction of the reconstruction error as compared to GLRAM, while keeping the computation cost low.
Generalized Low Rank Approximation of Matrices的更多相关文章
- Sparse Principal Component Analysis via Regularized Low Rank Matrix Approximation(Adjusted Variance)
目录 前言 文章概述 固定\(\widetilde{\mathrm{v}}\) 固定\(\widetilde{\mathrm{u}}\) Adjusted Variance 前言 这篇文章用的也是交替 ...
- 吴恩达机器学习笔记59-向量化:低秩矩阵分解与均值归一化(Vectorization: Low Rank Matrix Factorization & Mean Normalization)
一.向量化:低秩矩阵分解 之前我们介绍了协同过滤算法,本节介绍该算法的向量化实现,以及说说有关该算法可以做的其他事情. 举例:1.当给出一件产品时,你能否找到与之相关的其它产品.2.一位用户最近看上一 ...
- 推荐系统(recommender systems):预测电影评分--构造推荐系统的一种方法:低秩矩阵分解(low rank matrix factorization)
如上图中的predicted ratings矩阵可以分解成X与ΘT的乘积,这个叫做低秩矩阵分解. 我们先学习出product的特征参数向量,在实际应用中这些学习出来的参数向量可能比较难以理解,也很难可 ...
- <<Numerical Analysis>>笔记
2ed, by Timothy Sauer DEFINITION 1.3A solution is correct within p decimal places if the error is l ...
- <Numerical Analysis>(by Timothy Sauer) Notes
2ed, by Timothy Sauer DEFINITION 1.3A solution is correct within p decimal places if the error is l ...
- 2017年计算语义相似度最新论文,击败了siamese lstm,非监督学习
Page 1Published as a conference paper at ICLR 2017AS IMPLE BUT T OUGH - TO -B EAT B ASELINE FOR S EN ...
- cs231n spring 2017 lecture15 Efficient Methods and Hardware for Deep Learning 听课笔记
1. 深度学习面临的问题: 1)模型越来越大,很难在移动端部署,也很难网络更新. 2)训练时间越来越长,限制了研究人员的产量. 3)耗能太多,硬件成本昂贵. 解决的方法:联合设计算法和硬件. 计算硬件 ...
- 李宏毅-Network Compression课程笔记
一.方法总结 Network Pruning Knowledge Distillation Parameter Quantization Architecture Design Dynamic Com ...
- cs231n spring 2017 lecture15 Efficient Methods and Hardware for Deep Learning
讲课嘉宾是Song Han,个人主页 Stanford:https://stanford.edu/~songhan/:MIT:https://mtlsites.mit.edu/songhan/. 1. ...
随机推荐
- 迭代式返回 IEnumerable<T>
private IEnumerable<PoliceForceViewModel> CreateResultList(IEnumerable<GPSData> gpsData) ...
- QBZT Day3(zhx ak IOI)
动态规划 DP和前几天学的东西不大一样,动态规划和数据结构相比是一个非常抽象的东西 先来看看斐波那契数列 定义是F0=0,F1=1,Fn=F(n-1)+F(n-2) 0,1,1,2,3,5,8,13, ...
- 解决:git warning: LF will be replaced by CRLF in xxxx
一. git add -A报错 在利用git add -A添加文件时,意外的发现报错了 报错信息中: LF:Line Feed 换行 CRLF:Carriage Return Line Feed 回 ...
- 解决mysql登录报错:ERROR 2003 (HY000): Can't connect to MySQL server on 'localhost' (10061)
今天在安装一个压缩包mysql-5.7.19时,碰到了一系列问题,现将这些问题罗列出来: 一. ERROR 2003 (HY000): Can't connect to MySQL server o ...
- RNN、LSTM、Char-RNN 学习系列(一)
RNN.LSTM.Char-RNN 学习系列(一) zoerywzhou@gmail.com http://www.cnblogs.com/swje/ 作者:Zhouw 2016-3-15 版权声明 ...
- LeetCode OJ:Serialize and Deserialize Binary Tree(对树序列化以及解序列化)
Serialization is the process of converting a data structure or object into a sequence of bits so tha ...
- VueJs路由跳转——vue-router的使用
对于单页应用,官方提供了vue-router进行路由跳转的处理,本篇主要也是基于其官方文档写作而成. 安装 基于传统,我更喜欢采用npm包的形式进行安装. npm install vue-router ...
- PNG24在ie6下的完美解决方法!(DD_belatedPNG)
原网址:http://www.zjgsq.com/1629.html 之前写过一篇<js+css滤镜设置解决PNG24在IE6下显示问题> 解决方法不是很完美,使用起来也比较麻烦. DD_ ...
- Java继承与接口
public class test { public static void main(String[] args) { // TODO Auto-generated method stub B b= ...
- 畅通工程再续 (kruskal算法的延续)
个人心得:这题其实跟上一题没什么区别,自己想办法把坐标啥的都给转换为对应的图形模样就好了 相信大家都听说一个“百岛湖”的地方吧,百岛湖的居民生活在不同的小岛中,当他们想去其他的小岛时都要通过划小船来实 ...