Generalized Low Rank Approximation of Matrices
Generalized Low Rank Approximations of Matrices
JIEPING YE*jieping@cs.umn.edu
Department of Computer Science & Engineering,University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
Published online:12 August 2005
Abstract.The problem of computing low rank approximations of matrices is considered. The novel
aspect of our approach is that the low rank approximations are on a collection of matrices. We formulate this as an optimization problem, which aims to minimize the reconstruction (approximation) error. To the best of our knowledge, the optimization problem
proposed in this paper does not admit a closed form solution. We thus derive an iterative algorithm, namely GLRAM, which stands for the Generalized Low Rank Approximations of Matrices. GLRAM reduces the reconstruction error sequentially, and the resulting
approximation is thus improved during successive iterations. Experimental results show that the algorithm converges rapidly.
We have conducted extensive experiments on image data to evaluate the effectiveness of the proposed algorithm and compare
the computed low rank approximations with those obtained from traditional Singular Value Decomposition (SVD) based methods. The comparison is based on the reconstruction error, misclassification error rate,and computation time. Results show that GLRAM is competitive
with SVD for classification, while it has a muchlower computation cost. However, GLRAM results in a larger reconstruction error than SVD. To further reduce the reconstruction error, we study the combination of GLRAM and SVD, namely GLRAM + SVD, where SVD is
repreceded by GLRAM. Results show that when using the same number of reduced dimensions, GLRAM+SVD achievessignificant
reduction of the reconstruction error as compared to GLRAM, while keeping the computation cost low.
Generalized Low Rank Approximation of Matrices的更多相关文章
- Sparse Principal Component Analysis via Regularized Low Rank Matrix Approximation(Adjusted Variance)
目录 前言 文章概述 固定\(\widetilde{\mathrm{v}}\) 固定\(\widetilde{\mathrm{u}}\) Adjusted Variance 前言 这篇文章用的也是交替 ...
- 吴恩达机器学习笔记59-向量化:低秩矩阵分解与均值归一化(Vectorization: Low Rank Matrix Factorization & Mean Normalization)
一.向量化:低秩矩阵分解 之前我们介绍了协同过滤算法,本节介绍该算法的向量化实现,以及说说有关该算法可以做的其他事情. 举例:1.当给出一件产品时,你能否找到与之相关的其它产品.2.一位用户最近看上一 ...
- 推荐系统(recommender systems):预测电影评分--构造推荐系统的一种方法:低秩矩阵分解(low rank matrix factorization)
如上图中的predicted ratings矩阵可以分解成X与ΘT的乘积,这个叫做低秩矩阵分解. 我们先学习出product的特征参数向量,在实际应用中这些学习出来的参数向量可能比较难以理解,也很难可 ...
- <<Numerical Analysis>>笔记
2ed, by Timothy Sauer DEFINITION 1.3A solution is correct within p decimal places if the error is l ...
- <Numerical Analysis>(by Timothy Sauer) Notes
2ed, by Timothy Sauer DEFINITION 1.3A solution is correct within p decimal places if the error is l ...
- 2017年计算语义相似度最新论文,击败了siamese lstm,非监督学习
Page 1Published as a conference paper at ICLR 2017AS IMPLE BUT T OUGH - TO -B EAT B ASELINE FOR S EN ...
- cs231n spring 2017 lecture15 Efficient Methods and Hardware for Deep Learning 听课笔记
1. 深度学习面临的问题: 1)模型越来越大,很难在移动端部署,也很难网络更新. 2)训练时间越来越长,限制了研究人员的产量. 3)耗能太多,硬件成本昂贵. 解决的方法:联合设计算法和硬件. 计算硬件 ...
- 李宏毅-Network Compression课程笔记
一.方法总结 Network Pruning Knowledge Distillation Parameter Quantization Architecture Design Dynamic Com ...
- cs231n spring 2017 lecture15 Efficient Methods and Hardware for Deep Learning
讲课嘉宾是Song Han,个人主页 Stanford:https://stanford.edu/~songhan/:MIT:https://mtlsites.mit.edu/songhan/. 1. ...
随机推荐
- spring boot: @EnableScheduling开启计划任务支持,@Scheduled计划任务声明
spring boot: @EnableScheduling开启计划任务支持, @Scheduled计划任务声明 package ch2.scheduler2; //日期转换方式 import jav ...
- java:system根据输入的内容,然后输出(字节流)
把输入的内容输出来:根据system.in的内容System.out.println输出出来 都是字节流,的形式: //限制读取的字符长度 //字节流 InputStream ips = System ...
- @angular/cli项目构建--组件
环境:nodeJS,git,angular/cli npm install -g cnpm --registry=https://registry.npm.taobao.org cnpm instal ...
- Linux-监控与安全运维之Nagios
1. Nagios 简介是一个开源软件,可以监控网络设备网络流量.Linux/windows主机状态,甚至可以监控打印机它可以运行在Linux上或windows上基于浏览器的web界面方便运维人员查看 ...
- MonoBehavior lifecycle
awake 只调用一次, awake在所有obj都初始化之后被调用. 用途: 初始化游戏状态 设置脚本间的引用 ### ExecuteInEditMode 编辑模式下 ``` 这个模式下,脚本编译,会 ...
- stl_relops.h
stl_relops.h // Filename: stl_relops.h // Comment By: 凝霜 // E-mail: mdl2009@vip.qq.com // Blog: http ...
- POJ - 1324 Holedox Moving (状态压缩+BFS/A*)
题目链接 有一个n*m(1<=n,m<=20)的网格图,图中有k堵墙和有一条长度为L(L<=8)的蛇,蛇在移动的过程中不能碰到自己的身体.求蛇移动到点(1,1)所需的最小步数. 显然 ...
- RabbitMQ入门Demo
之前环境安装已经介绍过了,下面直接跑个Demo. 1.添加Maven依赖 <dependency> <groupId>org.springframework.amqp</ ...
- mysql之 共享表空间与独立表空间、frm,MYD,MYI.idb,par文件说明
一.共享表空间与独立表空间MySQL5.5默认是共享表空间 ,5.6中,默认是独立表空间. 共享表空间:ibdata1是InnoDB的共享表空间,默认配置是把全部表空间存放到ibdata1中,因此而造 ...
- .Net学习资源整理
.Net学习资源整理 ASP.NET Core