Generalized Low Rank Approximations of Matrices



JIEPING YE*jieping@cs.umn.edu

Department of Computer Science & Engineering,University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA

Published online:12 August 2005

        Abstract.The problem of computing low rank approximations of matrices is considered. The novel
aspect of our approach is that the low rank approximations are on a collection of matrices. We formulate this as an optimization problem, which aims to minimize the reconstruction (approximation) error. To the best of our knowledge, the optimization problem
proposed in this paper does not admit a closed form solution. We thus derive an iterative algorithm, namely GLRAM, which stands for the Generalized Low Rank Approximations of Matrices. GLRAM reduces the reconstruction error sequentially, and the resulting
approximation is thus improved during successive iterations. Experimental results show that the algorithm converges rapidly.

       We have conducted extensive experiments on image data to evaluate the effectiveness of the proposed algorithm and compare
the computed low rank approximations with those obtained from traditional Singular Value Decomposition (SVD) based methods. The comparison is based on the reconstruction error, misclassification error rate,and computation time. Results show that GLRAM is competitive
with SVD for classification, while it has a muchlower computation cost. However, GLRAM results in a larger reconstruction error than SVD. To further reduce the reconstruction error, we study the combination of GLRAM and SVD, namely GLRAM + SVD, where SVD is
repreceded by GLRAM. Results show that when using the same number of reduced dimensions, GLRAM+SVD achievessignificant
reduction of the reconstruction error as compared to GLRAM, while keeping the computation cost low.

Generalized Low Rank Approximation of Matrices的更多相关文章

  1. Sparse Principal Component Analysis via Regularized Low Rank Matrix Approximation(Adjusted Variance)

    目录 前言 文章概述 固定\(\widetilde{\mathrm{v}}\) 固定\(\widetilde{\mathrm{u}}\) Adjusted Variance 前言 这篇文章用的也是交替 ...

  2. 吴恩达机器学习笔记59-向量化:低秩矩阵分解与均值归一化(Vectorization: Low Rank Matrix Factorization & Mean Normalization)

    一.向量化:低秩矩阵分解 之前我们介绍了协同过滤算法,本节介绍该算法的向量化实现,以及说说有关该算法可以做的其他事情. 举例:1.当给出一件产品时,你能否找到与之相关的其它产品.2.一位用户最近看上一 ...

  3. 推荐系统(recommender systems):预测电影评分--构造推荐系统的一种方法:低秩矩阵分解(low rank matrix factorization)

    如上图中的predicted ratings矩阵可以分解成X与ΘT的乘积,这个叫做低秩矩阵分解. 我们先学习出product的特征参数向量,在实际应用中这些学习出来的参数向量可能比较难以理解,也很难可 ...

  4. <<Numerical Analysis>>笔记

    2ed,  by Timothy Sauer DEFINITION 1.3A solution is correct within p decimal places if the error is l ...

  5. <Numerical Analysis>(by Timothy Sauer) Notes

    2ed,  by Timothy Sauer DEFINITION 1.3A solution is correct within p decimal places if the error is l ...

  6. 2017年计算语义相似度最新论文,击败了siamese lstm,非监督学习

    Page 1Published as a conference paper at ICLR 2017AS IMPLE BUT T OUGH - TO -B EAT B ASELINE FOR S EN ...

  7. cs231n spring 2017 lecture15 Efficient Methods and Hardware for Deep Learning 听课笔记

    1. 深度学习面临的问题: 1)模型越来越大,很难在移动端部署,也很难网络更新. 2)训练时间越来越长,限制了研究人员的产量. 3)耗能太多,硬件成本昂贵. 解决的方法:联合设计算法和硬件. 计算硬件 ...

  8. 李宏毅-Network Compression课程笔记

    一.方法总结 Network Pruning Knowledge Distillation Parameter Quantization Architecture Design Dynamic Com ...

  9. cs231n spring 2017 lecture15 Efficient Methods and Hardware for Deep Learning

    讲课嘉宾是Song Han,个人主页 Stanford:https://stanford.edu/~songhan/:MIT:https://mtlsites.mit.edu/songhan/. 1. ...

随机推荐

  1. 51nod 1267 二分

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1267 1267 4个数和为0 基准时间限制:1 秒 空间限制:13107 ...

  2. 通过Intent 打开系统级应用

    众所周知,各个手机厂商由于对Android 原生系统定制的原因,会造成系统级应用packname 和activityname 不同的现象,就拿时钟软件来说,魅族2的activityname 是[com ...

  3. L116

    7. You will discover surprising new ideas that are interesting and engaging Reading introduced me to ...

  4. LKDBHelper Sqlite操作数据库

    首先这里要说明一下,为什么用FMDB而不用Core Data呢,因为我们不知道Core Data是如何映射对象里面的属性关系的,如果我们更改了属性的话,就会报错 首先是创建LKDBHelper对象 L ...

  5. 一段tcl代码

    #!/usr/bin/wish proc icanspeak {} { set name [.ent get] } { exec s $name } } label .lab -text " ...

  6. 让camera实现类似cs第一人称视角旋转和位移

    直接把这个脚本挂在摄像机上就可: using System.Collections; using System.Collections.Generic; using UnityEngine; /* * ...

  7. 系列文章----.Net程序员学用Oracle系列

    .Net程序员学用Oracle系列(18):PLSQL Developer 攻略 .Net程序员学用Oracle系列(17):数据库管理工具(SQL Plus) .Net程序员学用Oracle系列(1 ...

  8. 软件架构设计 ADMEMS方法体系

    ADMEMS是Architecture Design Method has been Extended to Method System的简称,是由CSAI顾问团架构设计专家组于2009年11月在第六 ...

  9. [转]使用Flexible实现手淘H5页面的终端适配

    曾几何时为了兼容IE低版本浏览器而头痛,以为到Mobile时代可以跟这些麻烦说拜拜.可没想到到了移动时代,为了处理各终端的适配而乱了手脚.对于混迹各社区的偶,时常发现大家拿手机淘宝的H5页面做讨论—— ...

  10. nginx与二级域名的绑定 nginx安装

    nginx中文文档 http://www.nginx.cn/doc/ nginx 查看配置文件地址 http://blog.csdn.net/ljfrocky/article/details/5052 ...