Generalized Low Rank Approximations of Matrices



JIEPING YE*jieping@cs.umn.edu

Department of Computer Science & Engineering,University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA

Published online:12 August 2005

        Abstract.The problem of computing low rank approximations of matrices is considered. The novel
aspect of our approach is that the low rank approximations are on a collection of matrices. We formulate this as an optimization problem, which aims to minimize the reconstruction (approximation) error. To the best of our knowledge, the optimization problem
proposed in this paper does not admit a closed form solution. We thus derive an iterative algorithm, namely GLRAM, which stands for the Generalized Low Rank Approximations of Matrices. GLRAM reduces the reconstruction error sequentially, and the resulting
approximation is thus improved during successive iterations. Experimental results show that the algorithm converges rapidly.

       We have conducted extensive experiments on image data to evaluate the effectiveness of the proposed algorithm and compare
the computed low rank approximations with those obtained from traditional Singular Value Decomposition (SVD) based methods. The comparison is based on the reconstruction error, misclassification error rate,and computation time. Results show that GLRAM is competitive
with SVD for classification, while it has a muchlower computation cost. However, GLRAM results in a larger reconstruction error than SVD. To further reduce the reconstruction error, we study the combination of GLRAM and SVD, namely GLRAM + SVD, where SVD is
repreceded by GLRAM. Results show that when using the same number of reduced dimensions, GLRAM+SVD achievessignificant
reduction of the reconstruction error as compared to GLRAM, while keeping the computation cost low.

Generalized Low Rank Approximation of Matrices的更多相关文章

  1. Sparse Principal Component Analysis via Regularized Low Rank Matrix Approximation(Adjusted Variance)

    目录 前言 文章概述 固定\(\widetilde{\mathrm{v}}\) 固定\(\widetilde{\mathrm{u}}\) Adjusted Variance 前言 这篇文章用的也是交替 ...

  2. 吴恩达机器学习笔记59-向量化:低秩矩阵分解与均值归一化(Vectorization: Low Rank Matrix Factorization & Mean Normalization)

    一.向量化:低秩矩阵分解 之前我们介绍了协同过滤算法,本节介绍该算法的向量化实现,以及说说有关该算法可以做的其他事情. 举例:1.当给出一件产品时,你能否找到与之相关的其它产品.2.一位用户最近看上一 ...

  3. 推荐系统(recommender systems):预测电影评分--构造推荐系统的一种方法:低秩矩阵分解(low rank matrix factorization)

    如上图中的predicted ratings矩阵可以分解成X与ΘT的乘积,这个叫做低秩矩阵分解. 我们先学习出product的特征参数向量,在实际应用中这些学习出来的参数向量可能比较难以理解,也很难可 ...

  4. <<Numerical Analysis>>笔记

    2ed,  by Timothy Sauer DEFINITION 1.3A solution is correct within p decimal places if the error is l ...

  5. <Numerical Analysis>(by Timothy Sauer) Notes

    2ed,  by Timothy Sauer DEFINITION 1.3A solution is correct within p decimal places if the error is l ...

  6. 2017年计算语义相似度最新论文,击败了siamese lstm,非监督学习

    Page 1Published as a conference paper at ICLR 2017AS IMPLE BUT T OUGH - TO -B EAT B ASELINE FOR S EN ...

  7. cs231n spring 2017 lecture15 Efficient Methods and Hardware for Deep Learning 听课笔记

    1. 深度学习面临的问题: 1)模型越来越大,很难在移动端部署,也很难网络更新. 2)训练时间越来越长,限制了研究人员的产量. 3)耗能太多,硬件成本昂贵. 解决的方法:联合设计算法和硬件. 计算硬件 ...

  8. 李宏毅-Network Compression课程笔记

    一.方法总结 Network Pruning Knowledge Distillation Parameter Quantization Architecture Design Dynamic Com ...

  9. cs231n spring 2017 lecture15 Efficient Methods and Hardware for Deep Learning

    讲课嘉宾是Song Han,个人主页 Stanford:https://stanford.edu/~songhan/:MIT:https://mtlsites.mit.edu/songhan/. 1. ...

随机推荐

  1. VMware Workstation Pro v14.0

    早些时候戴尔旗下的虚拟化软件 VMware Pro v14 版正式发布,本次更新主要是优化对创意者更新版的支持. 创意者更新版是目前微软 Windows 10 系统的最新版本,该版本亦会在十月份成为C ...

  2. C# 6.0 (VS2015 CTP6)

    /* C# 6.0 demo https://github.com/dotnet/roslyn/wiki/Languages-features-in-C%23-6-and-VB-14 */ using ...

  3. cassandra mongodb选择——cassandra:分布式扩展好,写性能强,以及可以预料的查询;mongodb:非事务,支持复杂查询,但是不适合报表

    Of course, like any technology MongoDB has its strengths and weaknesses. MongoDB is designed for OLT ...

  4. vue组件父子组件传递引用类型数据

    今天在写分页功能时,发现父子组件传值时,子组件监听不到父组件中数据的变化,传递的是一个引用类型的数据 其原因是引用类型共用一个内存地址,父子组件用的是同一个对象,故子组件监听不到变化,此时就需要做一个 ...

  5. Pdf 解密后复制文字乱码

    1.安装cajviewer 这个工具 2.用CAJviewer打开pdf文档 3.选择图像4.点文字识别,这时候就弹窗一个框,里面是可复制的文本,而且准确率比较高

  6. 分布式_理论_05_ 一致性算法 Paxos

    一.前言 二.参考资料 1.分布式理论(五)—— 一致性算法 Paxos 2.分布式理论(五) - 一致性算法Paxos

  7. python 计数器类Counter的用法

    简单操作: import collections A=['a','b','b','c','d','b','a'] count=collections.Counter(A) print(count) C ...

  8. 2016 ACM-ICPC 区域赛(大连站)题解

    题目链接 A - Wrestling Match (二分图染色) 题意略坑(没有说好的玩家一定能打过差的玩家啊啊~~) 典型的二分图染色问题,每个玩家看成一个点,把相互较量过的玩家之间连边,好的玩家染 ...

  9. LeetCode Image Smoother

    原题链接在这里:https://leetcode.com/problems/image-smoother/description/ 题目: Given a 2D integer matrix M re ...

  10. 页面报错Uncaught SyntaxError: Unexpected identifier

    错误描述:未捕获的语法错误:意想不到的标识符. 如图所示:检查之后发现是页面js内缺少“,”引起的.添加之后就OK了.