QuerySet

可切片

使用Python 的切片语法来限制查询集记录的数目 。它等同于SQL 的LIMIT 和OFFSET 子句。

>>> Entry.objects.all()[:5]      # (LIMIT 5)
Entry.objects.all()[5:10]    # (OFFSET 5 LIMIT 5)

不支持负的索引(例如Entry.objects.all()[-1])。通常,查询集 的切片返回一个新的查询集 —— 它不会执行查询。

可迭代

articleList=models.Article.objects.all()

for article in articleList:
print(article.title)

惰性查询

查询集 是惰性执行的 —— 创建查询集不会带来任何数据库的访问。你可以将过滤器保持一整天,直到查询集 需要求值时,Django 才会真正运行这个查询。

queryResult=models.Article.objects.all() # not hits database

print(queryResult) # hits database

for article in queryResult:
print(article.title) # hits database

一般来说,只有在“请求”查询集 的结果时才会到数据库中去获取它们。当你确实需要结果时,查询集 通过访问数据库来求值。 关于求值发生的准确时间,参见何时计算查询集

缓存机制

每个查询集都包含一个缓存来最小化对数据库的访问。理解它是如何工作的将让你编写最高效的代码。

在一个新创建的查询集中,缓存为空。首次对查询集进行求值 —— 同时发生数据库查询 ——Django 将保存查询的结果到查询集的缓存中并返回明确请求的结果(例如,如果正在迭代查询集,则返回下一个结果)。接下来对该查询集 的求值将重用缓存的结果。

请牢记这个缓存行为,因为对查询集使用不当的话,它会坑你的。例如,下面的语句创建两个查询集,对它们求值,然后扔掉它们:

print([a.title for a in models.Article.objects.all()])
print([a.create_time for a in models.Article.objects.all()])

这意味着相同的数据库查询将执行两次,显然倍增了你的数据库负载。同时,还有可能两个结果列表并不包含相同的数据库记录,因为在两次请求期间有可能有Article被添加进来或删除掉。为了避免这个问题,只需保存查询集并重新使用它:

queryResult=models.Article.objects.all()
print([a.title for a in queryResult])
print([a.create_time for a in queryResult])

何时查询集不会被缓存?

查询集不会永远缓存它们的结果。当只对查询集的部分进行求值时会检查缓存, 如果这个部分不在缓存中,那么接下来查询返回的记录都将不会被缓存。所以,这意味着使用切片或索引来限制查询集将不会填充缓存。

例如,重复获取查询集对象中一个特定的索引将每次都查询数据库:

>>> queryset = Entry.objects.all()
>>> print queryset[5] # Queries the database
>>> print queryset[5] # Queries the database again

然而,如果已经对全部查询集求值过,则将检查缓存:

>>> queryset = Entry.objects.all()
>>> [entry for entry in queryset] # Queries the database
>>> print queryset[5] # Uses cache
>>> print queryset[5] # Uses cache

下面是一些其它例子,它们会使得全部的查询集被求值并填充到缓存中:

>>> [entry for entry in queryset]
>>> bool(queryset)
>>> entry in queryset
>>> list(queryset)

注:简单地打印查询集不会填充缓存。

queryResult=models.Article.objects.all()
print(queryResult) # hits database
print(queryResult) # hits database

exists()与iterator()方法

exists:

简单的使用if语句进行判断也会完全执行整个queryset并且把数据放入cache,虽然你并不需要这些 数据!为了避免这个,可以用exists()方法来检查是否有数据:

 if queryResult.exists():
#SELECT (1) AS "a" FROM "blog_article" LIMIT 1; args=()
print("exists...")

iterator:

当queryset非常巨大时,cache会成为问题。

处理成千上万的记录时,将它们一次装入内存是很浪费的。更糟糕的是,巨大的queryset可能会锁住系统 进程,让你的程序濒临崩溃。要避免在遍历数据的同时产生queryset cache,可以使用iterator()方法 来获取数据,处理完数据就将其丢弃。

objs = Book.objects.all().iterator()
# iterator()可以一次只从数据库获取少量数据,这样可以节省内存
for obj in objs:
print(obj.title)
#BUT,再次遍历没有打印,因为迭代器已经在上一次遍历(next)到最后一次了,没得遍历了
for obj in objs:
print(obj.title)

当然,使用iterator()方法来防止生成cache,意味着遍历同一个queryset时会重复执行查询。所以使 #用iterator()的时候要当心,确保你的代码在操作一个大的queryset时没有重复执行查询。

总结:

queryset的cache是用于减少程序对数据库的查询,在通常的使用下会保证只有在需要的时候才会查询数据库。 使用exists()和iterator()方法可以优化程序对内存的使用。不过,由于它们并不会生成queryset cache,可能 会造成额外的数据库查询。 

中介模型

处理类似搭配 pizza 和 topping 这样简单的多对多关系时,使用标准的ManyToManyField  就可以了。但是,有时你可能需要关联数据到两个模型之间的关系上。

例如,有这样一个应用,它记录音乐家所属的音乐小组。我们可以用一个ManyToManyField 表示小组和成员之间的多对多关系。但是,有时你可能想知道更多成员关系的细节,比如成员是何时加入小组的。

对于这些情况,Django 允许你指定一个中介模型来定义多对多关系。 你可以将其他字段放在中介模型里面。源模型的ManyToManyField 字段将使用through 参数指向中介模型。对于上面的音乐小组的例子,代码如下:

from django.db import models

class Person(models.Model):
name = models.CharField(max_length=128) def __str__(self): # __unicode__ on Python 2
return self.name class Group(models.Model):
name = models.CharField(max_length=128)
members = models.ManyToManyField(Person, through='Membership') def __str__(self): # __unicode__ on Python 2
return self.name class Membership(models.Model):
person = models.ForeignKey(Person)
group = models.ForeignKey(Group)
date_joined = models.DateField()
invite_reason = models.CharField(max_length=64)

实际上就是自己定义第三张表,保证灵活度的同时又可以使用queryset的双下划线语法。

tags = models.ManyToManyField(
to="Tag",
through='Article2Tag',
through_fields=('article', 'tag'),
) def __str__(self):
return self.title class ArticleDetail(models.Model):
"""
文章详细表
"""
nid = models.AutoField(primary_key=True)
content = models.TextField()
article = models.OneToOneField(to='Article', to_field='nid')

另一种写法

既然你已经设置好ManyToManyField 来使用中介模型(在这个例子中就是Membership),接下来你要开始创建多对多关系。你要做的就是创建中介模型的实例:

>>> ringo = Person.objects.create(name="Ringo Starr")
>>> paul = Person.objects.create(name="Paul McCartney")
>>> beatles = Group.objects.create(name="The Beatles")
>>> m1 = Membership(person=ringo, group=beatles,
... date_joined=date(1962, 8, 16),
... invite_reason="Needed a new drummer.")
>>> m1.save()
>>> beatles.members.all()
[<Person: Ringo Starr>]
>>> ringo.group_set.all()
[<Group: The Beatles>]
>>> m2 = Membership.objects.create(person=paul, group=beatles,
... date_joined=date(1960, 8, 1),
... invite_reason="Wanted to form a band.")
>>> beatles.members.all()
[<Person: Ringo Starr>, <Person: Paul McCartney>]

与普通的多对多字段不同,你不能使用add、 create和赋值语句(比如,beatles.members = [...])来创建关系:

# THIS WILL NOT WORK
>>> beatles.members.add(john)
# NEITHER WILL THIS
>>> beatles.members.create(name="George Harrison")
# AND NEITHER WILL THIS
>>> beatles.members = [john, paul, ringo, george]

为什么不能这样做? 这是因为你不能只创建 Person和 Group之间的关联关系,你还要指定 Membership模型中所需要的所有信息;而简单的addcreate 和赋值语句是做不到这一点的。所以它们不能在使用中介模型的多对多关系中使用。此时,唯一的办法就是创建中介模型的实例。

remove()方法被禁用也是出于同样的原因。但是clear() 方法却是可用的。它可以清空某个实例所有的多对多关系:

>>> # Beatles have broken up
>>> beatles.members.clear()
>>> # Note that this deletes the intermediate model instances
>>> Membership.objects.all()
[]

查询优化

表数据

class UserInfo(AbstractUser):
"""
用户信息
"""
nid = models.BigAutoField(primary_key=True)
nickname = models.CharField(verbose_name='昵称', max_length=32)
telephone = models.CharField(max_length=11, blank=True, null=True, unique=True, verbose_name='手机号码')
avatar = models.FileField(verbose_name='头像',upload_to = 'avatar/',default="/avatar/default.png")
create_time = models.DateTimeField(verbose_name='创建时间', auto_now_add=True) fans = models.ManyToManyField(verbose_name='粉丝们',
to='UserInfo',
through='UserFans',
related_name='f',
through_fields=('user', 'follower')) def __str__(self):
return self.username class UserFans(models.Model):
"""
互粉关系表
"""
nid = models.AutoField(primary_key=True)
user = models.ForeignKey(verbose_name='博主', to='UserInfo', to_field='nid', related_name='users')
follower = models.ForeignKey(verbose_name='粉丝', to='UserInfo', to_field='nid', related_name='followers') class Blog(models.Model): """
博客信息
"""
nid = models.BigAutoField(primary_key=True)
title = models.CharField(verbose_name='个人博客标题', max_length=64)
site = models.CharField(verbose_name='个人博客后缀', max_length=32, unique=True)
theme = models.CharField(verbose_name='博客主题', max_length=32)
user = models.OneToOneField(to='UserInfo', to_field='nid')
def __str__(self):
return self.title class Category(models.Model):
"""
博主个人文章分类表
"""
nid = models.AutoField(primary_key=True)
title = models.CharField(verbose_name='分类标题', max_length=32) blog = models.ForeignKey(verbose_name='所属博客', to='Blog', to_field='nid') class Article(models.Model): nid = models.BigAutoField(primary_key=True)
title = models.CharField(max_length=50, verbose_name='文章标题')
desc = models.CharField(max_length=255, verbose_name='文章描述')
read_count = models.IntegerField(default=0)
comment_count= models.IntegerField(default=0)
up_count = models.IntegerField(default=0)
down_count = models.IntegerField(default=0)
category = models.ForeignKey(verbose_name='文章类型', to='Category', to_field='nid', null=True)
create_time = models.DateField(verbose_name='创建时间')
blog = models.ForeignKey(verbose_name='所属博客', to='Blog', to_field='nid')
tags = models.ManyToManyField(
to="Tag",
through='Article2Tag',
through_fields=('article', 'tag'),
) class ArticleDetail(models.Model):
"""
文章详细表
"""
nid = models.AutoField(primary_key=True)
content = models.TextField(verbose_name='文章内容', ) article = models.OneToOneField(verbose_name='所属文章', to='Article', to_field='nid') class Comment(models.Model):
"""
评论表
"""
nid = models.BigAutoField(primary_key=True)
article = models.ForeignKey(verbose_name='评论文章', to='Article', to_field='nid')
content = models.CharField(verbose_name='评论内容', max_length=255)
create_time = models.DateTimeField(verbose_name='创建时间', auto_now_add=True) parent_comment = models.ForeignKey('self', blank=True, null=True, verbose_name='父级评论')
user = models.ForeignKey(verbose_name='评论者', to='UserInfo', to_field='nid') up_count = models.IntegerField(default=0) def __str__(self):
return self.content class ArticleUpDown(models.Model):
"""
点赞表
"""
nid = models.AutoField(primary_key=True)
user = models.ForeignKey('UserInfo', null=True)
article = models.ForeignKey("Article", null=True)
models.BooleanField(verbose_name='是否赞') class CommentUp(models.Model):
"""
点赞表
"""
nid = models.AutoField(primary_key=True)
user = models.ForeignKey('UserInfo', null=True)
comment = models.ForeignKey("Comment", null=True) class Tag(models.Model):
nid = models.AutoField(primary_key=True)
title = models.CharField(verbose_name='标签名称', max_length=32)
blog = models.ForeignKey(verbose_name='所属博客', to='Blog', to_field='nid') class Article2Tag(models.Model):
nid = models.AutoField(primary_key=True)
article = models.ForeignKey(verbose_name='文章', to="Article", to_field='nid')
tag = models.ForeignKey(verbose_name='标签', to="Tag", to_field='nid')

select_related

简单使用

对于一对一字段(OneToOneField)和外键字段(ForeignKey),可以使用select_related 来对QuerySet进行优化。

select_related 返回一个QuerySet,当执行它的查询时它沿着外键关系查询关联的对象的数据。它会生成一个复杂的查询并引起性能的损耗,但是在以后使用外键关系时将不需要数据库查询。

简单说,在对QuerySet使用select_related()函数后,Django会获取相应外键对应的对象,从而在之后需要的时候不必再查询数据库了。

下面的例子解释了普通查询和select_related() 查询的区别。

查询id=2的文章的分类名称,下面是一个标准的查询:

# Hits the database.
article=models.Article.objects.get(nid=2) # Hits the database again to get the related Blog object.
print(article.category.title)
'''

SELECT
"blog_article"."nid",
"blog_article"."title",
"blog_article"."desc",
"blog_article"."read_count",
"blog_article"."comment_count",
"blog_article"."up_count",
"blog_article"."down_count",
"blog_article"."category_id",
"blog_article"."create_time",
"blog_article"."blog_id",
"blog_article"."article_type_id"
FROM "blog_article"
WHERE "blog_article"."nid" = 2; args=(2,) SELECT
"blog_category"."nid",
"blog_category"."title",
"blog_category"."blog_id"
FROM "blog_category"
WHERE "blog_category"."nid" = 4; args=(4,) '''

sql翻译

如果我们使用select_related()函数:

articleList=models.Article.objects.select_related("category").all()

    for article_obj in articleList:
# Doesn't hit the database, because article_obj.category
# has been prepopulated in the previous query.
print(article_obj.category.title)
SELECT
"blog_article"."nid",
"blog_article"."title",
"blog_article"."desc",
"blog_article"."read_count",
"blog_article"."comment_count",
"blog_article"."up_count",
"blog_article"."down_count",
"blog_article"."category_id",
"blog_article"."create_time",
"blog_article"."blog_id",
"blog_article"."article_type_id", "blog_category"."nid",
"blog_category"."title",
"blog_category"."blog_id" FROM "blog_article"
LEFT OUTER JOIN "blog_category" ON ("blog_article"."category_id" = "blog_category"."nid");

sql翻译

多外键查询

这是针对category的外键查询,如果是另外一个外键呢?让我们一起看下:

article=models.Article.objects.select_related("category").get(nid=1)
print(article.articledetail)

观察logging结果,发现依然需要查询两次,所以需要改为:

article=models.Article.objects.select_related("category","articledetail").get(nid=1)
print(article.articledetail)

或者:

article=models.Article.objects
             .select_related("category")
             .select_related("articledetail")
             .get(nid=1) # django 1.7 支持链式操作
print(article.articledetail)
SELECT

    "blog_article"."nid",
"blog_article"."title",
...... "blog_category"."nid",
"blog_category"."title",
"blog_category"."blog_id", "blog_articledetail"."nid",
"blog_articledetail"."content",
"blog_articledetail"."article_id" FROM "blog_article"
LEFT OUTER JOIN "blog_category" ON ("blog_article"."category_id" = "blog_category"."nid")
LEFT OUTER JOIN "blog_articledetail" ON ("blog_article"."nid" = "blog_articledetail"."article_id")
WHERE "blog_article"."nid" = 1; args=(1,)

深层查询

# 查询id=1的文章的用户姓名

    article=models.Article.objects.select_related("blog").get(nid=1)
print(article.blog.user.username)

依然需要查询两次:

SELECT
"blog_article"."nid",
"blog_article"."title",
...... "blog_blog"."nid",
"blog_blog"."title", FROM "blog_article" INNER JOIN "blog_blog" ON ("blog_article"."blog_id" = "blog_blog"."nid")
WHERE "blog_article"."nid" = 1; SELECT
"blog_userinfo"."password",
"blog_userinfo"."last_login",
...... FROM "blog_userinfo"
WHERE "blog_userinfo"."nid" = 1;

这是因为第一次查询没有query到userInfo表,所以,修改如下:

article=models.Article.objects.select_related("blog__user").get(nid=1)
print(article.blog.user.username)
SELECT

"blog_article"."nid", "blog_article"."title",
...... "blog_blog"."nid", "blog_blog"."title",
...... "blog_userinfo"."password", "blog_userinfo"."last_login",
...... FROM "blog_article" INNER JOIN "blog_blog" ON ("blog_article"."blog_id" = "blog_blog"."nid") INNER JOIN "blog_userinfo" ON ("blog_blog"."user_id" = "blog_userinfo"."nid")
WHERE "blog_article"."nid" = 1;

总结

  1. select_related主要针一对一和多对一关系进行优化。
  2. select_related使用SQL的JOIN语句进行优化,通过减少SQL查询的次数来进行优化、提高性能。
  3. 可以通过可变长参数指定需要select_related的字段名。也可以通过使用双下划线“__”连接字段名来实现指定的递归查询。
  4. 没有指定的字段不会缓存,没有指定的深度不会缓存,如果要访问的话Django会再次进行SQL查询。
  5. 也可以通过depth参数指定递归的深度,Django会自动缓存指定深度内所有的字段。如果要访问指定深度外的字段,Django会再次进行SQL查询。
  6. 也接受无参数的调用,Django会尽可能深的递归查询所有的字段。但注意有Django递归的限制和性能的浪费。
  7. Django >= 1.7,链式调用的select_related相当于使用可变长参数。Django < 1.7,链式调用会导致前边的select_related失效,只保留最后一个。

prefetch_related()

对于多对多字段(ManyToManyField)和一对多字段,可以使用prefetch_related()来进行优化。

prefetch_related()和select_related()的设计目的很相似,都是为了减少SQL查询的数量,但是实现的方式不一样。后者是通过JOIN语句,在SQL查询内解决问题。但是对于多对多关系,使用SQL语句解决就显得有些不太明智,因为JOIN得到的表将会很长,会导致SQL语句运行时间的增加和内存占用的增加。若有n个对象,每个对象的多对多字段对应Mi条,就会生成Σ(n)Mi 行的结果表。

prefetch_related()的解决方法是,分别查询每个表,然后用Python处理他们之间的关系。

# 查询所有文章关联的所有标签
article_obj=models.Article.objects.all()
for i in article_obj: print(i.tags.all()) #4篇文章: hits database 5

改为prefetch_related:

# 查询所有文章关联的所有标签
article_obj=models.Article.objects.prefetch_related("tags").all()
for i in article_obj: print(i.tags.all()) #4篇文章: hits database 2
SELECT "blog_article"."nid",
"blog_article"."title",
...... FROM "blog_article"; SELECT
("blog_article2tag"."article_id") AS "_prefetch_related_val_article_id",
"blog_tag"."nid",
"blog_tag"."title",
"blog_tag"."blog_id"
FROM "blog_tag"
INNER JOIN "blog_article2tag" ON ("blog_tag"."nid" = "blog_article2tag"."tag_id")
WHERE "blog_article2tag"."article_id" IN (1, 2, 3, 4);

extra

extra(select=None, where=None, params=None,
tables=None, order_by=None, select_params=None)

有些情况下,Django的查询语法难以简单的表达复杂的 WHERE 子句,对于这种情况, Django 提供了 extra() QuerySet修改机制 — 它能在 QuerySet生成的SQL从句中注入新子句

extra可以指定一个或多个 参数,例如 selectwhere or tables. 这些参数都不是必须的,但是你至少要使用一个!要注意这些额外的方式对不同的数据库引擎可能存在移植性问题.(因为你在显式的书写SQL语句),除非万不得已,尽量避免这样做

参数之select

The select 参数可以让你在 SELECT 从句中添加其他字段信息,它应该是一个字典,存放着属性名到 SQL 从句的映射。

queryResult=models.Article
           .objects.extra(select={'is_recent': "create_time > '2017-09-05'"})

结果集中每个 Entry 对象都有一个额外的属性is_recent, 它是一个布尔值,表示 Article对象的create_time 是否晚于2017-09-05.

练习:

# in sqlite:
article_obj=models.Article.objects
              .filter(nid=1)
              .extra(select={"standard_time":"strftime('%%Y-%%m-%%d',create_time)"})
              .values("standard_time","nid","title")
print(article_obj)
# <QuerySet [{'title': 'MongoDb 入门教程', 'standard_time': '2017-09-03', 'nid': 1}]>

extra为queryset的每一个对象增加了一个standard_time属性,standard_time是对时间对象的格式化结果:

strftime('%%Y-%%m-%%d',create_time):是sqlite的格式化函数
date_format(create_time,'%%Y-%%m-%%d'):是MySQL的格式化函数 这样可实现类似博客的年月时间归档:
date_list = Article.objects.filter(user=user).extra(select={"time": "strftime('%%Y-%%m',create_time)"}).values(
"time").annotate(c=Count("title")).values_list("time", "c")

参数之where / tables

您可以使用where定义显式SQL WHERE子句 - 也许执行非显式连接。您可以使用tables手动将表添加到SQL FROM子句。

wheretables都接受字符串列表。所有where参数均为“与”任何其他搜索条件。

举例来讲:

queryResult=models.Article
           .objects.extra(where=['nid in (1,3) OR title like "py%" ','nid>2'])
# extra
# 在QuerySet的基础上继续执行子语句
# extra(self, select=None, where=None, params=None, tables=None, order_by=None, select_params=None) # select和select_params是一组,where和params是一组,tables用来设置from哪个表
# Entry.objects.extra(select={'new_id': "select col from sometable where othercol > %s"}, select_params=(1,))
# Entry.objects.extra(where=['headline=%s'], params=['Lennon'])
# Entry.objects.extra(where=["foo='a' OR bar = 'a'", "baz = 'a'"])
# Entry.objects.extra(select={'new_id': "select id from tb where id > %s"}, select_params=(1,), order_by=['-nid']) 举个例子:
models.UserInfo.objects.extra(
select={'newid':'select count(1) from app01_usertype where id>%s'},
select_params=[1,],
where = ['age>%s'],
params=[18,],
order_by=['-age'],
tables=['app01_usertype']
)
"""
select
app01_userinfo.id,
(select count(1) from app01_usertype where id>1) as newid
from app01_userinfo,app01_usertype
where
app01_userinfo.age > 18
order by
app01_userinfo.age desc
""" # 执行原生SQL
# 更高灵活度的方式执行原生SQL语句
# from django.db import connection, connections
# cursor = connection.cursor() # cursor = connections['default'].cursor()
# cursor.execute("""SELECT * from auth_user where id = %s""", [1])
# row = cursor.fetchone()

整体插入

创建对象时,尽可能使用bulk_create()来减少SQL查询的数量。例如:

Entry.objects.bulk_create([
Entry(headline="Python 3.0 Released"),
Entry(headline="Python 3.1 Planned")
])

...更优于:

Entry.objects.create(headline="Python 3.0 Released")
Entry.objects.create(headline="Python 3.1 Planned")

注意该方法有很多注意事项,所以确保它适用于你的情况。

这也可以用在ManyToManyFields中,所以:

my_band.members.add(me, my_friend)

...更优于:

my_band.members.add(me)
my_band.members.add(my_friend)

...其中Bands和Artists具有多对多关联。

事务

import os

if __name__ == '__main__':
os.environ.setdefault("DJANGO_SETTINGS_MODULE", "BMS.settings")
import django
django.setup() import datetime
from app01 import models try:
from django.db import transaction
#缩进的内容作为一个事务执行
with transaction.atomic():
new_publisher = models.Publisher.objects.create(name="火星出版社")
models.Book.objects.create(title="橘子物语", publish_date=datetime.date.today(), publisher_id=10) # 指定一个不存在的出版社id
except Exception as e:
print(str(e))

QuerySet方法大全

##################################################################
# PUBLIC METHODS THAT ALTER ATTRIBUTES AND RETURN A NEW QUERYSET #
################################################################## def all(self)
# 获取所有的数据对象 def filter(self, *args, **kwargs)
# 条件查询
# 条件可以是:参数,字典,Q def exclude(self, *args, **kwargs)
# 条件查询
# 条件可以是:参数,字典,Q def select_related(self, *fields)
性能相关:表之间进行join连表操作,一次性获取关联的数据。 总结:
1. select_related主要针一对一和多对一关系进行优化。
2. select_related使用SQL的JOIN语句进行优化,通过减少SQL查询的次数来进行优化、提高性能。 def prefetch_related(self, *lookups)
性能相关:多表连表操作时速度会慢,使用其执行多次SQL查询在Python代码中实现连表操作。 总结:
1. 对于多对多字段(ManyToManyField)和一对多字段,可以使用prefetch_related()来进行优化。
2. prefetch_related()的优化方式是分别查询每个表,然后用Python处理他们之间的关系。 def annotate(self, *args, **kwargs)
# 用于实现聚合group by查询 from django.db.models import Count, Avg, Max, Min, Sum v = models.UserInfo.objects.values('u_id').annotate(uid=Count('u_id'))
# SELECT u_id, COUNT(ui) AS `uid` FROM UserInfo GROUP BY u_id v = models.UserInfo.objects.values('u_id').annotate(uid=Count('u_id')).filter(uid__gt=1)
# SELECT u_id, COUNT(ui_id) AS `uid` FROM UserInfo GROUP BY u_id having count(u_id) > 1 v = models.UserInfo.objects.values('u_id').annotate(uid=Count('u_id',distinct=True)).filter(uid__gt=1)
# SELECT u_id, COUNT( DISTINCT ui_id) AS `uid` FROM UserInfo GROUP BY u_id having count(u_id) > 1 def distinct(self, *field_names)
# 用于distinct去重
models.UserInfo.objects.values('nid').distinct()
# select distinct nid from userinfo 注:只有在PostgreSQL中才能使用distinct进行去重 def order_by(self, *field_names)
# 用于排序
models.UserInfo.objects.all().order_by('-id','age') def extra(self, select=None, where=None, params=None, tables=None, order_by=None, select_params=None)
# 构造额外的查询条件或者映射,如:子查询 Entry.objects.extra(select={'new_id': "select col from sometable where othercol > %s"}, select_params=(1,))
Entry.objects.extra(where=['headline=%s'], params=['Lennon'])
Entry.objects.extra(where=["foo='a' OR bar = 'a'", "baz = 'a'"])
Entry.objects.extra(select={'new_id': "select id from tb where id > %s"}, select_params=(1,), order_by=['-nid']) def reverse(self):
# 倒序
models.UserInfo.objects.all().order_by('-nid').reverse()
# 注:如果存在order_by,reverse则是倒序,如果多个排序则一一倒序 def defer(self, *fields):
models.UserInfo.objects.defer('username','id')

models.UserInfo.objects.filter(...).defer('username','id')
#映射中排除某列数据 def only(self, *fields):
#仅取某个表中的数据
models.UserInfo.objects.only('username','id')

models.UserInfo.objects.filter(...).only('username','id') def using(self, alias):
指定使用的数据库,参数为别名(setting中的设置) ##################################################
# PUBLIC METHODS THAT RETURN A QUERYSET SUBCLASS #
################################################## def raw(self, raw_query, params=None, translations=None, using=None):
# 执行原生SQL
models.UserInfo.objects.raw('select * from userinfo') # 如果SQL是其他表时,必须将名字设置为当前UserInfo对象的主键列名
models.UserInfo.objects.raw('select id as nid from 其他表') # 为原生SQL设置参数
models.UserInfo.objects.raw('select id as nid from userinfo where nid>%s', params=[12,]) # 将获取的到列名转换为指定列名
name_map = {'first': 'first_name', 'last': 'last_name', 'bd': 'birth_date', 'pk': 'id'}
Person.objects.raw('SELECT * FROM some_other_table', translations=name_map) # 指定数据库
models.UserInfo.objects.raw('select * from userinfo', using="default") ################### 原生SQL ###################
from django.db import connection, connections
cursor = connection.cursor() # cursor = connections['default'].cursor()
cursor.execute("""SELECT * from auth_user where id = %s""", [1])
row = cursor.fetchone() # fetchall()/fetchmany(..) def values(self, *fields):
# 获取每行数据为字典格式 def values_list(self, *fields, **kwargs):
# 获取每行数据为元祖 def dates(self, field_name, kind, order='ASC'):
# 根据时间进行某一部分进行去重查找并截取指定内容
# kind只能是:"year"(年), "month"(年-月), "day"(年-月-日)
# order只能是:"ASC" "DESC"
# 并获取转换后的时间
- year : 年-01-01
- month: 年-月-01
- day : 年-月-日 models.DatePlus.objects.dates('ctime','day','DESC') def datetimes(self, field_name, kind, order='ASC', tzinfo=None):
# 根据时间进行某一部分进行去重查找并截取指定内容,将时间转换为指定时区时间
# kind只能是 "year", "month", "day", "hour", "minute", "second"
# order只能是:"ASC" "DESC"
# tzinfo时区对象
models.DDD.objects.datetimes('ctime','hour',tzinfo=pytz.UTC)
models.DDD.objects.datetimes('ctime','hour',tzinfo=pytz.timezone('Asia/Shanghai')) """
pip3 install pytz
import pytz
pytz.all_timezones
pytz.timezone(‘Asia/Shanghai’)
""" def none(self):
# 空QuerySet对象 ####################################
# METHODS THAT DO DATABASE QUERIES #
#################################### def aggregate(self, *args, **kwargs):
# 聚合函数,获取字典类型聚合结果
from django.db.models import Count, Avg, Max, Min, Sum
result = models.UserInfo.objects.aggregate(k=Count('u_id', distinct=True), n=Count('nid'))
===> {'k': 3, 'n': 4} def count(self):
# 获取个数 def get(self, *args, **kwargs):
# 获取单个对象 def create(self, **kwargs):
# 创建对象 def bulk_create(self, objs, batch_size=None):
# 批量插入
# batch_size表示一次插入的个数
objs = [
models.DDD(name='r11'),
models.DDD(name='r22')
]
models.DDD.objects.bulk_create(objs, 10) def get_or_create(self, defaults=None, **kwargs):
# 如果存在,则获取,否则,创建
# defaults 指定创建时,其他字段的值
obj, created = models.UserInfo.objects.get_or_create(username='root1', defaults={'email': '','u_id': 2, 't_id': 2}) def update_or_create(self, defaults=None, **kwargs):
# 如果存在,则更新,否则,创建
# defaults 指定创建时或更新时的其他字段
obj, created = models.UserInfo.objects.update_or_create(username='root1', defaults={'email': '','u_id': 2, 't_id': 1}) def first(self):
# 获取第一个 def last(self):
# 获取最后一个 def in_bulk(self, id_list=None):
# 根据主键ID进行查找
id_list = [11,21,31]
models.DDD.objects.in_bulk(id_list) def delete(self):
# 删除 def update(self, **kwargs):
# 更新 def exists(self):
# 是否有结果

QuerySet方法大全

在Python脚本中调用Django环境

import os

if __name__ == '__main__':
os.environ.setdefault("DJANGO_SETTINGS_MODULE", "BMS.settings")
import django
django.setup() from app01 import models books = models.Book.objects.all()
print(books)

standard_time

DAY19-Django之model进阶的更多相关文章

  1. Django之Model进阶的更多操作

    Django之Model进阶的更多操作   一.字段 AutoField(Field) - int自增列,必须填入参数 primary_key=True BigAutoField(AutoField) ...

  2. Django中Model进阶操作

    一.字段 AutoField(Field) - int自增列,必须填入参数 primary_key=True BigAutoField(AutoField) - bigint自增列,必须填入参数 pr ...

  3. Django框架学习-Model进阶用法

    Model进阶用法 回顾 访问外键 访问多对多关系 更改数据库结构 当处理数据库结构改变时,需要注意到几点: 增加字段 首先在开发环境中: 再到产品环境中: 删除字段 删除多对多字段 删除model ...

  4. Django之Model操作

    Django之Model操作 本节内容 字段 字段参数 元信息 多表关系及参数 ORM操作 1. 字段 字段列表 AutoField(Field) - int自增列,必须填入参数 primary_ke ...

  5. 【python】-- Django ORM(进阶)

    Django ORM(进阶) 上一篇博文简述了Django ORM的单表操作,在本篇博文中主要简述Django ORM的连表操作. 一.一对多:models.ForeignKey() 应用场景:当一张 ...

  6. django (四) model模型

    models模型 1. models 定义属性 概述 django根据属性的类型确定以下信息 ·当前选择的数据库支持字段的类型 ·渲染管理表单时使用的默认html控件 ·在管理站点最低限度的验证 dj ...

  7. Django的学习进阶(三)————ORM

    django框架是将数据库信息进行了封装,采取了 类——>数据表 对象——>记录 属性——>字段 通过这种一一对应方式完成了orm的基本映射官方文档:https://docs.dja ...

  8. Django的Model上都有些什么

    Django的Model上都有些什么 modelinfo= ['DoesNotExist', 'MultipleObjectsReturned', '__class__', '__delattr__' ...

  9. Python之路【第二十二篇】:Django之Model操作

    Django之Model操作   一.字段 AutoField(Field) - int自增列,必须填入参数 primary_key=True BigAutoField(AutoField) - bi ...

  10. django User model

    django User model operation this tutorial will guide us to know how to manipulate django User model. ...

随机推荐

  1. review18

    数字格式化 程序可以直接使用String类调用format方法对数字进行格式化. format方法中的“格式化模式”是一个用双引号括起的字符序列(字符串),该字符序列的字符由格式符和普通字符所构成.代 ...

  2. review15

    不同区域的星期格式 不同国家的星期的简称或全称有很大的不同.如果想用特定地区的星期格式来表示日期中的星期,可以用format的重载方法: format(Locale locale, 格式化模式,日期列 ...

  3. 178. Rank Scores

    问题描述 解决方案 select sc.Score, (select count(*) from (select distinct Score from Scores ) ds where ds.Sc ...

  4. IIS7 配置PHP服务器

    安装PHP Manager: 1)访问 http://phpmanager.codeplex.com/releases/view/69115 下载PHP Manager.其中,x86 为32位 Win ...

  5. 论文笔记 — MatchNet: Unifying Feature and Metric Learning for Patch-Based Matching

    论文:https://github.com/ei1994/my_reference_library/tree/master/papers 本文的贡献点如下: 1. 提出了一个新的利用深度网络架构基于p ...

  6. App Store下载Mac应用失败的解决办法

    1. 更换DNS服务器 国内可以用alidns: 223.5.5.5 223.6.6.6 也可以用电信的: 114.114.114.114 国外的可以考虑Google 8.8.8.8 8.8.4.4 ...

  7. 时间服务器: NTP 服务器及客户端搭建

    时间服务器: NTP 服务器及客户端搭建 一. NTP 服务器的安装与设定 1. NTP 服务器的安装与设定前言 2. 所需软件与软件结构 3. 主要配置文件 ntp.conf 的处理 4. NTP ...

  8. c++中对齐方式

    使用cout<<setiosflags(ios::right)以后, 再调用 cout<<setiosflags(ios::left);无效的, 你可以在调用之前加上一句 co ...

  9. 分布式事务_03_2PC框架raincat源码解析-事务提交过程

    一.前言 前面两节,我们已经将raincat的demo工程启动,并简单分析了下事务协调者与事务参与者的启动过程. 这一节,我们来看下raincat的事务提交过程. 二.事务提交过程概览 1.二阶段对应 ...

  10. 20165210 Java第五周学习总结

    20165210 Java第五周学习总结 教材学习内容 - 第七章学习总结 内部类: 内部类的外嵌类的成员变量在内部类中仍然有效,内部类中的方法也可以调用外嵌类中的方法. 内部类的类体中不可以声明类变 ...