这是莫凡python学习笔记。

1.构造数据,可以可视化看看数据样子

import torch
import torch.utils.data as Data
import torch.nn.functional as F
import matplotlib.pyplot as plt
%matplotlib inline
# torch.manual_seed(1) # reproducible LR = 0.01
BATCH_SIZE = 32
EPOCH = 12 # fake dataset
x = torch.unsqueeze(torch.linspace(-1, 1, 1000), dim=1)
y = x.pow(2) + 0.1*torch.normal(torch.zeros(*x.size())) # plot dataset
plt.scatter(x.numpy(), y.numpy())
plt.show()

输出

2.构造数据集,及数据加载器

# put dateset into torch dataset
torch_dataset = Data.TensorDataset(x, y)
loader = Data.DataLoader(dataset=torch_dataset, batch_size=BATCH_SIZE, shuffle=True, num_workers=2,)

3.搭建网络,以相应优化器命名

# default network
class Net(torch.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.hidden = torch.nn.Linear(1, 20) # hidden layer
self.predict = torch.nn.Linear(20, 1) # output layer def forward(self, x):
x = F.relu(self.hidden(x)) # activation function for hidden layer
x = self.predict(x) # linear output
return x net_SGD = Net()
net_Momentum = Net()
net_RMSprop = Net()
net_Adam = Net()
nets = [net_SGD, net_Momentum, net_RMSprop, net_Adam]

4.构造优化器,此处共构造了SGD,Momentum,RMSprop,Adam四种优化器

# different optimizers
opt_SGD = torch.optim.SGD(net_SGD.parameters(), lr=LR)
opt_Momentum = torch.optim.SGD(net_Momentum.parameters(), lr=LR, momentum=0.8)
opt_RMSprop = torch.optim.RMSprop(net_RMSprop.parameters(), lr=LR, alpha=0.9)
opt_Adam = torch.optim.Adam(net_Adam.parameters(), lr=LR, betas=(0.9, 0.99))
optimizers = [opt_SGD, opt_Momentum, opt_RMSprop, opt_Adam]

5.定义损失函数,并开始迭代训练

   loss_func = torch.nn.MSELoss()
losses_his = [[], [], [], []] # record loss # training
for epoch in range(EPOCH):
print('Epoch: ', epoch)
for step, (b_x, b_y) in enumerate(loader): # for each training step
for net, opt, l_his in zip(nets, optimizers, losses_his):
output = net(b_x) # get output for every net
loss = loss_func(output, b_y) # compute loss for every net
opt.zero_grad() # clear gradients for next train
loss.backward() # backpropagation, compute gradients
opt.step() # apply gradients
l_his.append(loss.data.numpy()) # loss recoder

6.画图,观察损失在不同优化器下的变化

    labels = ['SGD', 'Momentum', 'RMSprop', 'Adam']
for i, l_his in enumerate(losses_his):
plt.plot(l_his, label=labels[i])
plt.legend(loc='best')
plt.xlabel('Steps')
plt.ylabel('Loss')
plt.ylim((0, 0.2))
plt.show()

输出

可以看到RMSprop和Adam的效果最好。

pytorch构建优化器的更多相关文章

  1. [源码解析] PyTorch分布式优化器(1)----基石篇

    [源码解析] PyTorch分布式优化器(1)----基石篇 目录 [源码解析] PyTorch分布式优化器(1)----基石篇 0x00 摘要 0x01 从问题出发 1.1 示例 1.2 问题点 0 ...

  2. [源码解析] PyTorch分布式优化器(2)----数据并行优化器

    [源码解析] PyTorch分布式优化器(2)----数据并行优化器 目录 [源码解析] PyTorch分布式优化器(2)----数据并行优化器 0x00 摘要 0x01 前文回顾 0x02 DP 之 ...

  3. [源码解析] PyTorch分布式优化器(3)---- 模型并行

    [源码解析] PyTorch分布式优化器(3)---- 模型并行 目录 [源码解析] PyTorch分布式优化器(3)---- 模型并行 0x00 摘要 0x01 前文回顾 0x02 单机模型 2.1 ...

  4. 【小知识】神经网络中的SGD优化器和MSE损失函数

    今天来讲下之前发的一篇极其简单的搭建网络的博客里的一些细节 (前文传送门) 之前的那个文章中,用Pytorch搭建优化器的代码如下: # 设置优化器 optimzer = torch.optim.SG ...

  5. 【机器学习的Tricks】随机权值平均优化器swa与pseudo-label伪标签

    文章来自公众号[机器学习炼丹术] 1 stochastic weight averaging(swa) 随机权值平均 这是一种全新的优化器,目前常见的有SGB,ADAM, [概述]:这是一种通过梯度下 ...

  6. 『PyTorch』第十一弹_torch.optim优化器

    一.简化前馈网络LeNet import torch as t class LeNet(t.nn.Module): def __init__(self): super(LeNet, self).__i ...

  7. Pytorch torch.optim优化器个性化使用

    一.简化前馈网络LeNet 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 im ...

  8. Pytorch实现MNIST(附SGD、Adam、AdaBound不同优化器下的训练比较) adabound实现

     学习工具最快的方法就是在使用的过程中学习,也就是在工作中(解决实际问题中)学习.文章结尾处附完整代码. 一.数据准备  在Pytorch中提供了MNIST的数据,因此我们只需要使用Pytorch提供 ...

  9. pytorch 优化器调参

    torch.optim 如何使用optimizer 构建 为每个参数单独设置选项 进行单次优化 optimizer.step() optimizer.step(closure) 算法 如何调整学习率 ...

随机推荐

  1. MySQL中varchar类型排序

    -- +0后就转换INT类型排序 SELECT * FROM T_TEST ORDER BY (SORT + 0) DESC ;

  2. 关联查询 join的使用

    #!/usr/bin/env python import sqlalchemy from sqlalchemy import create_engine from sqlalchemy.ext.dec ...

  3. windows下单机版的伪分布式solrCloud环境搭建Tomcat+solr+zookeeper

    原文出自:http://sbp810050504.blog.51cto.com/2799422/1408322           按照该方法,伪分布式solr部署成功                 ...

  4. nginx 代理参数介绍

    2)我们可以看到nginx文件夹内有一个conf文件夹,其中有好几个文件,其他先不管,我们打开nginx.conf,可以看到一段: 这段代码在server里面,相当于一个代理服务器,当然可以配置多个. ...

  5. Ajax02 什么是json、json语法、json的使用、利用jQuery实现ajax

    目录 1什么是json 2json语法 3json的使用 4利用jQuery实现ajax编程 1 什么是json JavaScript Object Notation(JavaScript 对象表示法 ...

  6. SPOJ KATHTHI - KATHTHI

    以前并不知道这个trick. $01BFS$,在$bfs$的时候用一个双端队列来维护,如果边权为$1$就添加到队尾,边权为$0$就添加到队首. 还有一个小trick就是我们可以开一个$dis$数组来代 ...

  7. etl 获取列数据类型

    QueryInfo info = new QueryInfo(); info.CustomSQL = @" select column_name, data_type, data_preci ...

  8. Entity Framework Tutorial Basics(39):Raw SQL Query

    Execute Native SQL Query You can execute native raw SQL query against the database using DBContext. ...

  9. 一劳永逸搭建android开发环境(android官网reference sample api tutorial全下载)

    [摘要]本文简单介绍了android开发环境的搭建,重点介绍了SDK manager和AVD升级问题:并提供了android reference,sample,api,及docs的下载信息. [1]为 ...

  10. sina 接口 根据ip获取各个国家和地区

    http://int.dpool.sina.com.cn/iplookup/iplookup.php?format=json&ip=ip