1类签名与注释

public class HashMap<K,V> extends AbstractMap<K,V>
implements Map<K,V>, Cloneable, Serializable

HashMap是基于哈希表实现的Map接口。 此实现提供了所有可选的地图操作,并允许null的值和null键。 ( HashMap类大致相当于Hashtable ,除了它是不同步的,并允许null)。该类不能保证map的顺序,特别是,它不能保证顺序在一段时间内保持不变(因为hash数组扩容时会重新散列)。

假设哈希函数在这些存储桶之间合理分散元素,这个实现为基本操作( getput )提供了恒定的时间性能。收集视图的迭代与HashMap实例(桶数)加上其大小(键值映射数)的容量成正比 。 因此,想要好的迭代性能,不要将初始容量设置得太高(或负载因子太低)。

HashMap的一个实例有两个影响其性能的参数: 初始容量(capacity)和负载因子(load factor) 。 容量是哈希表中的桶数,初始容量只是创建哈希表时的容量。 负载因子是在容量自动增加之前允许哈希表得到满足的度量。 当在散列表中的条目的数量超过了负载因数和当前容量的乘积,哈希表被重新散列 (即,内部数据结构被重建),使得哈希表具有桶的大约两倍。

作为一般规则,默认负载因子(0.75)提供了时间和空间成本之间的良好折中。 更高的值会降低空间开销,但会增加查找成本(反映在HashMap类的大部分操作中,包括getput )。 在设置其初始容量时,应考虑map中预期的条目数及其负载因子,以便最小化rehash操作的数量。 如果初始容量大于最大条目数除以负载因子,则不会发生重新排列操作。

如果有许多映射要存储在HashMap实例中,那么创建足够大的容量存储要比它自己自动扩容再rehash的效率高。注意,多个keys使用同样的hashCode会降低hash表的性能。为了改善影响,当按键是Comparable时,这个类可以使用keys之间的比较顺序来帮助打破关系。

请注意,此实现不同步。 如果多个线程同时访问哈希映射,并且至少有一个线程在结构上修改了映射,那么它必须在外部进行同步。 (结构修改是添加或删除一个或多个映射的任何操作;仅改变与实例已经包含的密钥相关联的值不是结构修改。)这可以通过同步对象来实现,如果没有同步对象,map应该使用Collections.synchronizedMap方法“包装”。 这最好在创建时完成,以防止意外的不同步访问map:

Map m = Collections.synchronizedMap(new HashMap(...)); 

被该类的所有集合视图方法返回的迭代器都是fail-fast的:如果映射在迭代器创建之后的任何时间被结构地修改,除了通过迭代器自己的remove方法之外,迭代器将抛出一个ConcurrentModificationException 。 因此,面对并发修改,迭代器将快速而干净地失败,而不是在未来未确定的时间冒着任意的非确定性行为。

请注意,迭代器的故障快速行为无法保证,迭代器的故障快速行为应仅用于检测错误,而不是依赖它来保证程序的正确性。

该类是Java Collections Framework的成员。

2成员变量

// 序列号
private static final long serialVersionUID = 362498820763181265L;
// 默认初始化容量16,要求必须是2的n次方。
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
// 最大容量,因为必须是2的n次方,int中最大只能到230
static final int MAXIMUM_CAPACITY = 1 << 30;
// 默认负载因子
static final float DEFAULT_LOAD_FACTOR = 0.75f;

//当桶中的键值对数量到达8个,且桶数量大于等于64,则将底层实现从链表转为红黑
// 如果桶中的键值对到达该阀值,则检测桶数量 
static final int TREEIFY_THRESHOLD = 8; static final int UNTREEIFY_THRESHOLD = 6;
//当桶数(底层数组长度)到达64个的时候,则将链表转为红黑树
static final int MIN_TREEIFY_CAPACITY = 64; ------------------------------------------------------------------------------- transient Node<K,V>[] table; //Holds cached entrySet(). Note that AbstractMap fields are used for keySet() and values().
transient Set<Map.Entry<K,V>> entrySet; //The number of key-value mappings contained in this map.
transient int size; transient int modCount;
//当集合没有分配空间时,表示初始的数组容量。当分配了,则表示(capacity * load factor)
//注意理解这个属性,否则后面的代码不好理解
int threshold; //The load factor for the hash table.
final float loadFactor;

存储桶table是用Node型的数组表示的,Node是一个静态内部类,实现了Map.Entry接口。这里将每个Entity封装成一个链表的节点,每个节点指向下一个节点(如果有的话)。

所以hashMap是用数组和链表实现的。(当当达到一定条件后,由“数组/链表”变为“数组/红黑树”实现)

static class Node<K,V> implements Map.Entry<K,V> {
final int hash;
final K key;
V value;
Node<K,V> next; Node(int hash, K key, V value, Node<K,V> next) {
this.hash = hash;
this.key = key;
this.value = value;
this.next = next;
} public final K getKey() { return key; }
public final V getValue() { return value; }
public final String toString() { return key + "=" + value; } public final int hashCode() {
return Objects.hashCode(key) ^ Objects.hashCode(value);
} public final V setValue(V newValue) {
V oldValue = value;
value = newValue;
return oldValue;
} public final boolean equals(Object o) {
if (o == this)
return true;
if (o instanceof Map.Entry) {
Map.Entry<?,?> e = (Map.Entry<?,?>)o;
if (Objects.equals(key, e.getKey()) &&
Objects.equals(value, e.getValue()))
return true;
}
return false;
}
}

3构造函数

 //(1)指定初始容量initialCapacity与负载因子loadFactor
public HashMap(int initialCapacity, float loadFactor) {
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal initial capacity: " +
initialCapacity);
if (initialCapacity > MAXIMUM_CAPACITY) //初始容量最大值
initialCapacity = MAXIMUM_CAPACITY;
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal load factor: " +
loadFactor);
this.loadFactor = loadFactor;
this.threshold = tableSizeFor(initialCapacity);
}
//该方法可以将参数cap值改为2n,2n-1<cap≤2n
static final int tableSizeFor(int cap) {
int n = cap - 1;
n |= n >>> 1;
n |= n >>> 2;
n |= n >>> 4;
n |= n >>> 8;
n |= n >>> 16;
return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}

//(2)指定初始容量,负载因子默认0.75
public HashMap(int initialCapacity) {
this(initialCapacity, DEFAULT_LOAD_FACTOR);
}
//(3)默认初始容量16(在put时会检查扩容),负载因子默认0.75
public HashMap() {
this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
}

public HashMap(Map<? extends K, ? extends V> m) {
this.loadFactor = DEFAULT_LOAD_FACTOR;
putMapEntries(m, false);
}
final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {
int s = m.size();
if (s > 0) {
if (table == null) { // pre-size
float ft = ((float)s / loadFactor) + 1.0F;
int t = ((ft < (float)MAXIMUM_CAPACITY) ?
(int)ft : MAXIMUM_CAPACITY);
if (t > threshold)
threshold = tableSizeFor(t);
}
else if (s > threshold)
resize();
for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
K key = e.getKey();
V value = e.getValue();
putVal(hash(key), key, value, false, evict);
}
}
}

tableSizeFor(int cap)方法使用无符号右移和或运算,实现了将cap参数转为2n的整数。思路如下:以00001000(8)为例,从左往右找到第一个1,先>>>1得(00000100)然后或操作原数(00001000)得(00001100),将原数第一个1的下一位变成1。下一次>>>2或之后得15(00001111),也就是把最高位1开始之后的所有位都变成1,最后加1就变成了2n。因为int是32位得所以最多移16位即可。为什么要先加1,最后再减1?这样可以保证2n-1<cap≤2n,否则当cap=8时,返回得结果为16都是2的n次方,没有什么意义。

也可以通过1个map类型的参数构造HashMap,构造函数通过调用putMapEntries实现。putMapEntries先检查一下容量,然后通过putVal插入元素。关于putVal方法,在后面小节详细说明。

4查找

 public V get(Object key) {
Node<K,V> e;
return (e = getNode(hash(key), key)) == null ? null : e.value;
} final Node<K,V> getNode(int hash, Object key) {
Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
if ((tab = table) != null && (n = tab.length) > 0 &&
(first = tab[(n - 1) & hash]) != null) {
if (first.hash == hash && // always check first node
((k = first.key) == key || (key != null && key.equals(k))))
return first;
if ((e = first.next) != null) {
if (first instanceof TreeNode)
return ((TreeNode<K,V>)first).getTreeNode(hash, key);
do {
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
} while ((e = e.next) != null);
}
}
return null;
} public boolean containsKey(Object key) {
return getNode(hash(key), key) != null;
}

get方法和containsKey都是通过getNode实现。

(1)如何通过key的hash值找到key在数组中的位置?

注意代码line9,first = tab[(n - 1) & hash],前面我们知道HashMap的容量是2的指数倍的,所以n-1可以保证低位全部都是1,例如n=16,n-1=1(00001111)。而(n - 1) & hash可以将hash值得高位置0,相当于hash%n,但计算速度比后者要快。

(2)找到该位置的对应节点

first表示该位置的第一个节点,当找到该位置时,总是要先检查一下first节点是不是查找的元素(line10-12)。若不是则往后遍历链表。(为什么要判断TreeNode?)

(3)hash(key)实现的原理

 static final int hash(Object key) {
int h;
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}

若非空,则高16位不变,低16位变成高16位和低16位的异或。为什么要这么做?前面我们知道定位是通过(length - 1) & hash,当length不够大时(也就是hashMap容量不够大),一直是hash值的低位起作用,这样容易造成碰撞(不同的hash值定位的结果相同),所以要提高高位的影响。然后就有了该操作。

注意key为null的情况,hashMap是允许key为null的,key为null的entry(键值对)存储在存储数组的0号位。

也可以查找value是否在集合中

 public boolean containsValue(Object value) {
Node<K,V>[] tab; V v;
if ((tab = table) != null && size > 0) {
for (int i = 0; i < tab.length; ++i) {
for (Node<K,V> e = tab[i]; e != null; e = e.next) {
if ((v = e.value) == value ||
(value != null && value.equals(v)))
return true;
}
}
}
return false;
}

这里总结两个源码实现的小技巧:

(1)在遍历数组前先检查数组是否为空。((tab = table) != null && size > 0)

(2)判断对象是否相等的方式。((v = e.value) == value || (value != null && value.equals(v)))

5扩容

resize方法

 final Node<K,V>[] resize() {
Node<K,V>[] oldTab = table;
int oldCap = (oldTab == null) ? 0 : oldTab.length;
int oldThr = threshold;
int newCap, newThr = 0;
if (oldCap > 0) { // 容量不为空(已分配内存空间)
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab; //已到最大值,没法继续扩容
}
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY) //容量增为2倍,并检查
newThr = oldThr << 1; // 将阈值也扩为2倍
}
else if (oldThr > 0) // 若容量为0,old阈值大于0。容量用阈值表示(见构造函数1)
newCap = oldThr;
else { // 若容量为0,old阈值也为0。使用默认值初始化(见构造函数3)
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
if (newThr == 0) { //计算阈值的合理值
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab;
if (oldTab != null) { //将旧的值复制到新的存储桶里面
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
if ((e = oldTab[j]) != null) {
oldTab[j] = null;
if (e.next == null) //如果该位置只有1个元素,直接插如到新的位置(从新计算位置)
newTab[e.hash & (newCap - 1)] = e;
else if (e instanceof TreeNode)
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
else { // preserve order
Node<K,V> loHead = null, loTail = null;
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
do {
next = e.next;
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e; // 头节点指向第一个元素
else
loTail.next = e; // 当前个元素的next指向下一个元素
loTail = e; //尾节点移向下一个个元素
}
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}

下面重点分析line40-66,这里的任务是处理oldTab[j]位置的值不是单个元素,而是由多个元素组成链表的情况。

原理是通过头节点Head定位第一个元素,通过尾节点Tail的不断后移组装链表。但是为什么这里要使用两组头尾节点呢?(loHead+loTail、hiHead+hiTail)

这里是定位用的。举个例子原集合容量为16(0001 0000),(e.hash & oldCap) == 0表示hash值的第5位(从右往左)为0,这样扩容后定位为e.hash & (newCap-1)= e.hash &31(0001 1111),计算后第5位也为0,与旧集合的位置一样。所以line62直接将链表存在和同样的位置上。否则hash值的第5位为1,定位计算后第5位也为0,与原来相比大了2(5-1)=16,正好是大了旧集合的容量,所以line66定位用j+oldCap。可以把容量为32的新集合简单理解为高16位和低16位,结合取模计算就很好理解了。

line37-38在后面讨论红黑树的时候解释。

6添加元素

通过调用put方法向hashMap中添加1个元素

 public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
} /**
* @param hash hash for key
* @param key the key
* @param value the value to put
* @param onlyIfAbsent if true, don't change existing value
* @param evict if false, the table is in creation mode.
* @return previous value, or null if none
*/
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
else {
Node<K,V> e; K k;
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
else if (p instanceof TreeNode)
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
else {
for (int binCount = 0; ; ++binCount) {
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
++modCount;
if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null;
}

line16-17检查集合是否为空,若是则分配初始容量。

line18-19根据hash值进行定位,检查存储桶在该位置i是否为空。若是则直接放入新的值。(newNode方法新建1个Node类型的对象)。

若存储桶在i位置有元素

(1)首先判断key值是否和链表的第一个元素相等(line22)

(2)若相等则如果参数onlyIfAbsent为false或者该位置的值为null,将value赋值为新值,并返回旧值(line41-47)。

(3)若1步不相等,则检查是否是TreeNode类型(红黑树实现)

(4)在链表的尾部插入新的元素(Node类型)

line25-26中的treeNode后面再研究。

最后判断当前容量是否超过阈值,若超过就要进行扩容。line50-51

afterNodeInsertion是一个post-actions,为了方便LinkedHashMap插入节点后的行为。但是在HashMap里面是该方法没有任何行为。

注意:line31检查桶中的节点数量(链表的长度),大于阀值则调用treeifyBin方法,treeifyBin中检查桶数量,大于64则需要将底层实现由链表改为红黑树,  如果桶数量不到64则重构一下链表 。 (jdk8中做的优化)

//当桶的数量太多的时候,底层则改为红黑树实现
final void treeifyBin(Node<K,V>[] tab, int hash) {
int n, index; Node<K,V> e;
//当桶的数量有 MIN_TREEIFY_CAPACITY (64)个时才将链表改为红黑树
if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
//节点太少则resize()
resize();
else if ((e = tab[index = (n - 1) & hash]) != null) {
//将链接的结点转为二叉树结构
TreeNode<K,V> hd = null, tl = null;
do {
TreeNode<K,V> p = replacementTreeNode(e, null);
if (tl == null)
hd = p;
else {
p.prev = tl;
tl.next = p;
}
tl = p;
} while ((e = e.next) != null);
if ((tab[index] = hd) != null)
hd.treeify(tab);
}
}

7删除元素

public V remove(Object key) {
Node<K,V> e;
return (e = removeNode(hash(key), key, null, false, true)) == null ?
null : e.value;
} /**
* @param hash hash for key
* @param key the key
* @param value the value to match if matchValue, else ignored
* @param matchValue if true only remove if value is equal
* @param movable if false do not move other nodes while removing
* @return the node, or null if none
*/
final Node<K,V> removeNode(int hash, Object key, Object value,
boolean matchValue, boolean movable) {
Node<K,V>[] tab; Node<K,V> p; int n, index;
if ((tab = table) != null && (n = tab.length) > 0 &&
(p = tab[index = (n - 1) & hash]) != null) {
Node<K,V> node = null, e; K k; V v;
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
node = p;
else if ((e = p.next) != null) {
if (p instanceof TreeNode)
node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
else {
do {
if (e.hash == hash &&
((k = e.key) == key ||
(key != null && key.equals(k)))) {
node = e;
break;
}
p = e;
} while ((e = e.next) != null);
}
}
if (node != null && (!matchValue || (v = node.value) == value ||
(value != null && value.equals(v)))) {
if (node instanceof TreeNode)
((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
else if (node == p)
tab[index] = node.next;
else
p.next = node.next;
++modCount;
--size;
afterNodeRemoval(node);
return node;
}
}
return null;
}

删除所有元素

 public void clear() {
Node<K,V>[] tab;
modCount++;
if ((tab = table) != null && size > 0) {
size = 0;
for (int i = 0; i < tab.length; ++i)
tab[i] = null;
}
}

 8迭代器

hashMap内部实现了四个迭代器,分别是HashIterator,KeyIterator,ValueIterator,EntryIterator。其中HashIterator是其他迭代器的父类。

HashIterator实现如下:

 abstract class HashIterator {
Node<K,V> next; // next entry to return
Node<K,V> current; // current entry
int expectedModCount; // for fast-fail
int index; // current slot HashIterator() {
expectedModCount = modCount;
Node<K,V>[] t = table;
current = next = null;
index = 0;
if (t != null && size > 0) { // 找到数组第一个不为null的位置
do {} while (index < t.length && (next = t[index++]) == null);
}
} public final boolean hasNext() {
return next != null;
} final Node<K,V> nextNode() {
Node<K,V>[] t;
Node<K,V> e = next;
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
if (e == null)
throw new NoSuchElementException();
if ((next = (current = e).next) == null && (t = table) != null) { // 这里不仅判断,而且将next节点后移。
do {} while (index < t.length && (next = t[index++]) == null); // 找到数组下一个不为null的位置
}
return e;
} public final void remove() {
Node<K,V> p = current;
if (p == null)
throw new IllegalStateException();
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
current = null; //要求remove之前的操作是nextNode
K key = p.key;
removeNode(hash(key), key, null, false, false);
expectedModCount = modCount;
}
}

KeyIterator是keySet的迭代器实现

ValueIterator是valuse的迭代器实现

EntryIterator是Entry的迭代器实现

final class KeyIterator extends HashIterator
implements Iterator<K> {
public final K next() { return nextNode().key; }
} final class ValueIterator extends HashIterator
implements Iterator<V> {
public final V next() { return nextNode().value; }
} final class EntryIterator extends HashIterator
implements Iterator<Map.Entry<K,V>> {
public final Map.Entry<K,V> next() { return nextNode(); }
}

本文只分析了hashMap的一些基本操作的实现,其他的方法(包括函数编程内容,红黑树的实现等)后续会深入学习。

Java源码阅读HashMap的更多相关文章

  1. Java源码阅读的真实体会(一种学习思路)

    Java源码阅读的真实体会(一种学习思路) 刚才在论坛不经意间,看到有关源码阅读的帖子.回想自己前几年,阅读源码那种兴奋和成就感(1),不禁又有一种激动. 源码阅读,我觉得最核心有三点:技术基础+强烈 ...

  2. Java源码阅读的真实体会(一种学习思路)【转】

    Java源码阅读的真实体会(一种学习思路)   刚才在论坛不经意间,看到有关源码阅读的帖子.回想自己前几年,阅读源码那种兴奋和成就感(1),不禁又有一种激动. 源码阅读,我觉得最核心有三点:技术基础+ ...

  3. 如何阅读Java源码 阅读java的真实体会

    刚才在论坛不经意间,看到有关源码阅读的帖子.回想自己前几年,阅读源码那种兴奋和成就感(1),不禁又有一种激动. 源码阅读,我觉得最核心有三点:技术基础+强烈的求知欲+耐心.   说到技术基础,我打个比 ...

  4. [收藏] Java源码阅读的真实体会

    收藏自http://www.iteye.com/topic/1113732 刚才在论坛不经意间,看到有关源码阅读的帖子.回想自己前几年,阅读源码那种兴奋和成就感(1),不禁又有一种激动. 源码阅读,我 ...

  5. JDK 1.8源码阅读 HashMap

    一,前言 HashMap实现了Map的接口,而Map的类型是成对出现的.每个元素由键与值两部分组成,通过键可以找对所对应的值.Map中的集合不能包含重复的键,值可以重复:每个键只能对应一个值. 存储数 ...

  6. java源码阅读Hashtable

    1类签名与注释 public class Hashtable<K,V> extends Dictionary<K,V> implements Map<K,V>, C ...

  7. 【JDK1.8】JDK1.8集合源码阅读——HashMap

    一.前言 笔者之前看过一篇关于jdk1.8的HashMap源码分析,作者对里面的解读很到位,将代码里关键的地方都说了一遍,值得推荐.笔者也会顺着他的顺序来阅读一遍,除了基础的方法外,添加了其他补充内容 ...

  8. Java源码阅读Stack

    Stack(栈)实现了一个后进先出(LIFO)的数据结构.该类继承了Vector类,是通过调用父类Vector的方法实现基本操作的. Stack共有以下五个操作: put:将元素压入栈顶. pop:弹 ...

  9. Java源码解析|HashMap的前世今生

    HashMap的前世今生 Java8在Java7的基础上,做了一些改进和优化. 底层数据结构和实现方法上,HashMap几乎重写了一套 所有的集合都新增了函数式的方法,比如说forEach,也新增了很 ...

随机推荐

  1. BZOJ3244 [Noi2013]树的计数 【数学期望 + 树遍历】

    题目链接 BZOJ3244 题解 不会做orz 我们要挖掘出\(bfs\)序和\(dfs\)序的性质 ①容易知道\(bfs\)序一定是一层一层的,如果我们能确定在\(bfs\)序中各层的断点,就能确定 ...

  2. NOIP2017赛前考试注意事项总结

     考前: 考试前把读入优化和库以及对拍文件打好做好准备工作,另外注意放松心态,太紧张了肯定考不好··将自己的注意力集中起来  考场策略: 考试的基本策略是对每于道题先想个20分钟,如果想不出个靠谱的方 ...

  3. linux——rhel安装yum

    在进行下面的操作之前,一定要确保网络正常,如果没有网络,下面的所有操作一个都不能实现.(下次会写个本地源的配置,这个就可以离线的状态下进行,需要用到系统的镜像文件,安装好系统之后不要删掉.) 首先配置 ...

  4. 每天一个小算法(Shell Sort1)

    希尔排序是1959 年由D.L.Shell 提出来的,相对直接排序有较大的改进.希尔排序又叫缩小增量排序 基本思想: 先将整个待排序的记录序列分割成为若干子序列分别进行直接插入排序,待整个序列中的记录 ...

  5. [CQOI2018]异或序列 (莫队,异或前缀和)

    题目链接 Solution 有点巧的莫队. 考虑到区间 \([L,R]\) 的异或和也即 \(sum[L-1]~\bigoplus~sum[R]\) ,此处\(sum\)即为异或前缀和. 然后如何考虑 ...

  6. 3.2 Lucene实战:一个简单的小程序

    在讲解Lucene索引和检索的原理之前,我们先来实战Lucene:一个简单的小程序! 一.索引小程序 首先,new一个java project,名字叫做LuceneIndex. 然后,在project ...

  7. CI的多级目录的功能

    https://segmentfault.com/q/1010000008317555?_ea=1621531

  8. python--bs4

  9. Fiddler抓包3-查看get与post请求【转载】

    本篇转自博客:上海-悠悠 原文地址:http://www.cnblogs.com/yoyoketang/p/6719717.html 前言 前面两篇关于Fiddler抓包的一些基本配置,配置完之后就可 ...

  10. Selenium2+python自动化2-pip降级selenium3.0【转载】

    selenium版本安装后启动Firefox出现异常:'geckodriver' executable needs to be in PATH selenium默默的升级到了3.0,然而网上的教程都是 ...