Luogu 4388 付公主的矩形
还是挺妙的。
发现对于一个$r$行$c$列的矩阵,穿过的格子数$n = r + c - gcd(r, c)$,题目中其实给定了这个$n$,要我们计算满足这个式子的$r$和$c$的个数。
发现$n$一定要是$gcd(r, c)$的倍数,等式两边可以除掉这个$gcd(r, c)$,变成$n' = r' + c' - 1$。
那么这时候$gcd(r', c') = gcd(n' + 1 - r', c') = 1$。
根据辗转相减法,有$gcd(n' + 1, c') = 1$,而满足这个式子的$c'$的个数恰好是$\varphi (n' + 1)$。
于是可以开心地计算出$c'$的总数$sum = \sum_{d|n} \varphi (d + 1)$。
注意到这时$(n, n)$这一对数只算了一遍,所以最后的答案$ans = (sum + 1) / 2$。
线性筛一波就好啦,时间复杂度$O(n)$。
Code:
#include <cstdio>
#include <cstring>
using namespace std; const int N = 1e6 + ; int n, pCnt = , ans = , pri[N], phi[N];
bool np[N]; inline void sieve() {
phi[] = ;
for(int i = ; i <= n + ; i++) {
if(!np[i]) pri[++pCnt] = i, phi[i] = i - ;
for(int j = ; j <= pCnt && i * pri[j] <= n + ; j++) {
np[i * pri[j]] = ;
if(i % pri[j] == ) {
phi[i * pri[j]] = phi[i] * pri[j];
break;
}
phi[i * pri[j]] = phi[i] * phi[pri[j]];
}
}
} int main() {
scanf("%d", &n);
sieve();
for(int i = ; i <= n; i++)
if(n % i == ) ans += phi[i + ];
printf("%d\n", (ans + ) / );
return ;
}
Luogu 4388 付公主的矩形的更多相关文章
- P4388 付公主的矩形(gcd+欧拉函数)
P4388 付公主的矩形 前置芝士 \(gcd\)与欧拉函数 要求对其应用于性质比较熟,否则建议左转百度 思路 有\(n×m\)的矩阵,题目要求对角线经过的格子有\(N\)个, 设函数\(f(x,y) ...
- luogu4388 付公主的矩形
题面: 为了排解心中的怒气,她造了大量的稻草人来发泄.每天付公主都会把一些稻草人摆成一个R∗C的矩形,矩形的每个方格上都有一个稻草人.然后她站在这个矩形的左上角,向矩形的右下角射箭.付公主的箭术过人, ...
- [洛谷P4388] 付公主的矩形
18.09.09模拟赛T1. 一道数学题. 题目传送门 首先把对角线当成是某个点的移动轨迹,从左下到右上. 那么这个点每上升一个单位长度,就穿过一个格子. 每右移一个单位长度,也会穿过一个格子. 例外 ...
- luogu P4389 付公主的背包
传送门 神仙题鸭!orz dkw 暴力就是完全背包 而完全背包可以和生成函数扯上关系,记第i种物品质量为\(a_i\),那么这种物品的生成函数\(G(i)=\sum_{j=0}^{\infty}x^{ ...
- [luogu 4389] 付公主的背包
题意:求一个较大的多重背包对于每个i的方案数,答案对998244353取模. 思路: 生成函数: 对于一个\(V\) 设: \(f(x) = \sum_{i=0}^{oo} x ^ {V * i} = ...
- 洛谷 P4389 付公主的背包 解题报告
P4389 付公主的背包 题目背景 付公主有一个可爱的背包qwq 题目描述 这个背包最多可以装\(10^5\)大小的东西 付公主有\(n\)种商品,她要准备出摊了 每种商品体积为\(V_i\),都有\ ...
- LuoguP4389 付公主的背包【生成函数+多项式exp】
题目背景 付公主有一个可爱的背包qwq 题目描述 这个背包最多可以装10^5105大小的东西 付公主有n种商品,她要准备出摊了 每种商品体积为Vi,都有10^5105件 给定m,对于s\in [1,m ...
- 洛谷 4389 付公主的背包——多项式求ln、exp
题目:https://www.luogu.org/problemnew/show/P4389 关于泰勒展开: https://blog.csdn.net/SoHardToNamed/article/d ...
- luoguP4389 付公主的背包
luogu 显然这是个背包题 显然物品的数量是不用管的 所以考虑大小为\(v\)的物品可以装的体积用生成函数表示一下 \[ f(x)=\sum_{i=0}^{+\infty}x^{vi}=\frac{ ...
随机推荐
- XXX.APP已损坏,打不开.你应该将它移到废纸篓
XXX.APP已损坏,打不开.你应该将它移到废纸篓 MACOS 10.12 SIERRA 如遇:「xxx.app已损坏,打不开.你应该将它移到废纸篓」,并非你安装的软件已损坏,而是Mac系统的安全设置 ...
- 201621123014《Java程序设计》第九周学习总结
1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结集合与泛型相关内容. 答: 2. 书面作业 本次作业题集集合 1. List中指定元素的删除(题集题目) 1.1 实验总结.并回答: ...
- CodeForces - 650D:Zip-line (LIS & DP)
Vasya has decided to build a zip-line on trees of a nearby forest. He wants the line to be as long a ...
- docker下安装 Oracle11gR2
这是第二次安装,在第一次安装过程部分内容参考自如下: http://blog.sina.com.cn/s/blog_d840ff330102v4j0.html docker下oracle11g安装 h ...
- 《Javascript高级程序设计》阅读记录(五):第六章 上
这个系列以往文字地址: <Javascript高级程序设计>阅读记录(一):第二.三章 <Javascript高级程序设计>阅读记录(二):第四章 <Javascript ...
- mongodb所在目录空间不足解决方法
1.原理是将目录/home/aa软连接到/usr/lib/下,以后从/usr/lib下读取的内容其实都是放在/home/aa下. 建议不要大范围动/usr下的内容,咋着也是属于系统目录,可能会对已装软 ...
- (转载)Windows: "net use" command introduction
1)建立空连接: net use ""IP"ipc$ "" /user:"" (一定要注意:这一行命令中包含了3个空格) 2)建立 ...
- Spring Boot基本配置
本文参考javaEE开发的颠覆者SpringBoot实战第一版 基本配置 入口类和@SpringBootApplication Spring Boot通常有一个名为*Application的入口类,且 ...
- 解决方案: the selected file is a solution file but was created by a newer version of this application and cannot be opened
最近在用IronGithub访问Github api时遇到一个问题: the selected file is a solution file but was created by a newer v ...
- [置顶]
strcpy()与strncpy()的区别
头文件:#include <string.h> strcpy() 函数用来复制字符串,其原型为: char *strcpy(char *dest, const char *src); [参 ...