1. 题目:

  Given a string S, find the longest palindromic substring in S. You may assume that the maximum length of S is 1000, and there exists one unique longest palindromic substring.

注:

palindromic substring :回文序列,如:aba,abba 等。

2.1   C++    暴力解决—— 时间复杂度O(N³)

思路:

(1).  构造一个map,存储原字符出现的所有位置;

(2). 从头到位扫描字符串,根据map中的位置,选取子字符串,判断是否为回文序列

class Solution {
public:
    string longestPalindrome(string s) {
        unsigned long long string_len=s.length();
        if(string_len==0)
            return "";
        if(string_len==1)
            return s;
        string current_str="",longest_str="";
        unsigned long long current_len=0,longest_len=0;
        map<char,vector<unsigned long long> >char_pos_map;
         
        for(int i=0;i<string_len;i++){
            map<char,vector<unsigned long long> >::iterator char_pos_map_it=char_pos_map.find(s[i]);  
            if(char_pos_map_it==char_pos_map.end()) {   
                vector<unsigned long long> pos_list;   
                pos_list.push_back(i);   
                char_pos_map.insert(pair<char, vector<unsigned long long > >((char)s[i],pos_list));   
            } else {   
                vector<unsigned long long> & pos_list=char_pos_map_it->second;   
                pos_list.push_back(i);   
            }   
        }                                      //map存储每个字符出现的位置
         
       
        for(int index_head = 0;index_head<string_len;index_head++) {   
            std::map<char, vector<unsigned long long > >::iterator it = char_pos_map.find(s[index_head]);   
            if( it->second.size()==1) {   
                current_len = 1;   
                current_str = s[index_head];   
                if(current_len>longest_len) {   
                      longest_str = current_str;   
                      longest_len = current_len;                          //只出现一次的字符         
                }

} else {                       
                vector<unsigned long long> & tmp_vec = it->second;                   
                unsigned long long index_num =  tmp_vec.size();   
                unsigned long long tmp_index_head =  index_head;   
                for(long long j=(long long)(index_num-1);j>=0;j--) {   
                    tmp_index_head = index_head;   
                    unsigned long long tmp_index_tail = tmp_vec[j];   
                     
                    if(tmp_index_tail<tmp_index_head)   
                        continue;   
                    current_len = tmp_index_tail-tmp_index_head+1;   
                    if( current_len==0 || current_len < longest_len)   
                        continue;   
                         
                    current_str = s.substr(tmp_index_head, current_len);        //取子字符串,验证是否为回文字符
                    while( ((long long)(tmp_index_tail-tmp_index_head)>=1) && (s[tmp_index_tail]==s[tmp_index_head]) ) {

tmp_index_head++;   
                        tmp_index_tail--;   
                    }

if( ((long long)(tmp_index_tail-tmp_index_head)==-1) || (tmp_index_tail-tmp_index_head==0) ){       //奇数  偶数个字符的情况
                        longest_len = current_len;   
                        longest_str = current_str;   
                    }   
                       
                }   
            }   
        }   
        return longest_str;   
    }   
};

2.2  动态规划

删除暴力解法中有很多重复的判断。很容易想到动态规划,时间复杂度O(n^2),空间O(n^2),动态规划方程如下:

  • dp[i][j] 表示子串s[i…j]是否是回文
  • 初始化:dp[i][i] = true (0 <= i <= n-1);  dp[i][i-1] = true (1 <= i <= n-1); 其余的初始化为false
  • dp[i][j] = (s[i] == s[j] && dp[i+1][j-1] == true)

在动态规划中保存最长回文的长度及起点即可

 
 
class Solution {
public:
    string longestPalindrome(string s) {
        const int len = s.size();
        if(len <= 1)return s;
        bool dp[len][len];               //dp[i][j]表示s[i..j]是否是回文
        memset(dp, 0, sizeof(dp));      //初始化为0
        int resLeft = 0, resRight = 0; 
        dp[0][0] = true;
 
        for(int i = 1; i < len; i++)
        {
            dp[i][i] = true;
            dp[i][i-1] = true;           //这个初始化容易忽略,当k=2时要用到
        }
 
        for(int k = 2; k <= len; k++)           //外层循环:枚举子串长度
            for(int i = 0; i <= len-k; i++)     //内层循环:枚举子串起始位置
            {
                if(s[i] == s[i+k-1] && dp[i+1][i+k-2])
                {
                    dp[i][i+k-1] = true;
                    if(resRight-resLeft+1 < k)
                    {
                        resLeft = i;
                        resRight = i+k-1;
                    }
                }
            }
        return s.substr(resLeft, resRight-resLeft+1);
    }
};

2.3 从中间向两边展开,时间复杂度O(n^2),空间O(1)

  回文字符串显然有个特征是沿着中心那个字符轴对称。比如aha沿着中间的h轴对称,a沿着中间的a轴对称。那么aa呢?沿着中间的空字符''轴对称。所以对于长度为奇数的回文字符串,它沿着中心字符轴对称,对于长度为偶数的回文字符串,它沿着中心的空字符轴对称。对于长度为N的候选字符串,我们需要在每一个可能的中心点进行检测以判断是否构成回文字符串,这样的中心点一共有2N-1个(2N-1=N-1 + N)。检测的具体办法是,从中心开始向两端展开,观察两端的字符是否相同

class Solution {
public:
    string longestPalindrome(string s) {
        const int len = s.size();
        if(len <= 1)return s;
        int start, maxLen = 0;
        for(int i = 1; i < len; i++)
        {
            //寻找以i-1,i为中点偶数长度的回文
            int low = i-1, high = i;
            while(low >= 0 && high < len && s[low] == s[high])
            {
                low--;
                high++;
            }
            if(high - low - 1 > maxLen)
            {
                maxLen = high - low -1;
                start = low + 1;
            }
             
            //寻找以i为中心的奇数长度的回文
            low = i- 1; high = i + 1;
            while(low >= 0 && high < len && s[low] == s[high])
            {
                low--;
                high++;
            }
            if(high - low - 1 > maxLen)
            {
                maxLen = high - low -1;
                start = low + 1;
            }
        }
        return s.substr(start, maxLen);
    }
};

java

两侧比较:

public class LongestPalindromicSubString1 {  

    /**
* @param args
*/
public static void main(String[] args) {
// TODO Auto-generated method stub
System.out.println(longestPalindrome1("babcbabcbaccba"));
} public static String longestPalindrome1(String s) { int maxPalinLength = 0;
String longestPalindrome = null;
int length = s.length(); // check all possible sub strings
for (int i = 0; i < length; i++) {
for (int j = i + 1; j < length; j++) {
int len = j - i;
String curr = s.substring(i, j + 1);
if (isPalindrome(curr)) {
if (len > maxPalinLength) {
longestPalindrome = curr;
maxPalinLength = len;
}
}
}
} return longestPalindrome;
} public static boolean isPalindrome(String s) { for (int i = 0; i < s.length() - 1; i++) {
if (s.charAt(i) != s.charAt(s.length() - 1 - i)) {
return false;
}
} return true;
}
}

动态规划:

public class LongestPalindromicSubString2 {  

    public static String longestPalindrome2(String s) {
if (s == null)
return null; if(s.length() <=1)
return s; int maxLen = 0;
String longestStr = null; int length = s.length(); int[][] table = new int[length][length]; //every single letter is palindrome
for (int i = 0; i < length; i++) {
table[i][i] = 1;
}
printTable(table); //e.g. bcba
//two consecutive same letters are palindrome
for (int i = 0; i <= length - 2; i++) {
//System.out.println("i="+i+" "+s.charAt(i));
//System.out.println("i="+i+" "+s.charAt(i+1));
if (s.charAt(i) == s.charAt(i + 1)){
table[i][i + 1] = 1;
longestStr = s.substring(i, i + 2);
}
}
System.out.println(longestStr);
printTable(table);
//condition for calculate whole table
for (int l = 3; l <= length; l++) {
for (int i = 0; i <= length-l; i++) {
int j = i + l - 1;
if (s.charAt(i) == s.charAt(j)) {
table[i][j] = table[i + 1][j - 1];
if (table[i][j] == 1 && l > maxLen)
longestStr = s.substring(i, j + 1); } else {
table[i][j] = 0;
}
printTable(table);
}
} return longestStr;
}
public static void printTable(int[][] x){
for(int [] y : x){
for(int z: y){
//System.out.print(z + " ");
}
//System.out.println();
}
//System.out.println("------");
}
public static void main(String[] args) {
System.out.println(longestPalindrome2("1263625"));//babcbabcbaccba
}
}

leetcode--5 Longest Palindromic Substring的更多相关文章

  1. leetcode 第五题 Longest Palindromic Substring (java)

    Longest Palindromic Substring Given a string S, find the longest palindromic substring in S. You may ...

  2. leetcode第五题--Longest Palindromic Substring

    Problem:Given a string S, find the longest palindromic substring in S. You may assume that the maxim ...

  3. Leetcode:【DP】Longest Palindromic Substring 解题报告

    Longest Palindromic Substring -- HARD 级别 Question SolutionGiven a string S, find the longest palindr ...

  4. LeetCode(5)Longest Palindromic Substring

    题目 Given a string S, find the longest palindromic substring in S. You may assume that the maximum le ...

  5. [LeetCode] Longest Palindromic Substring 最长回文串

    Given a string S, find the longest palindromic substring in S. You may assume that the maximum lengt ...

  6. Leetcode Longest Palindromic Substring

    Given a string S, find the longest palindromic substring in S. You may assume that the maximum lengt ...

  7. 求最长回文子串 - leetcode 5. Longest Palindromic Substring

    写在前面:忍不住吐槽几句今天上海的天气,次奥,鞋子里都能养鱼了...裤子也全湿了,衣服也全湿了,关键是这天气还打空调,只能瑟瑟发抖祈祷不要感冒了.... 前后切了一百零几道leetcode的题(sol ...

  8. LeetCode 5 Longest Palindromic Substring(最长子序列)

    题目来源:https://leetcode.com/problems/longest-palindromic-substring/ Given a string S, find the longest ...

  9. 【JAVA、C++】LeetCode 005 Longest Palindromic Substring

    Given a string S, find the longest palindromic substring in S. You may assume that the maximum lengt ...

随机推荐

  1. matlab矩阵与数组

    数组运算:数与数组加减:k+/-A %k加或减A的每个元素数组乘数组: A.*B %对应元素相乘数组乘方: A.^k %A的每个元素k次方:k.^A,分别以k为底A的各元素为指数求幂值数除以数组: k ...

  2. 《OD玩阿里云》搭建环境

    一.安装mysql 1. 解决乱码问题 http://www.ha97.com/5359.html http://blog.csdn.net/qiyuexuelang/article/details/ ...

  3. PAT甲级——1098 Insertion or Heap Sort (插入排序、堆排序)

    本文同步发布在CSDN:https://blog.csdn.net/weixin_44385565/article/details/90941941 1098 Insertion or Heap So ...

  4. 位运算实现四则运算(C++实现)

    前言 Leetcode中有一道这样的题:给定两个整数,被除数 dividend 和除数 divisor.将两数相除,要求不使用乘法.除法和 mod 运算符.返回被除数 dividend 除以除数 di ...

  5. Leetcode初级算法(排序和搜索+数学篇)

    合并两个有序数组 开始的时候将这道题理解错了,发现几个奇怪的测试案例后才明白这道题什么意思.本来的想法就是把nums2全部放到num1里面,然后删除重复元素.排序一下,就有了下面的代码: class ...

  6. 关于强大的requests

    存到文件: with open(filename, 'wb') as fd: for chunk in r.iter_content(chunk_size): fd.write(chunk) 使用 R ...

  7. SVN服务器地址更换方法

    由于工作需要,已将SVN服务器从172.16.8.xxx上迁移至172.16.8.yyy上,SVN地址变为:https://172.16.8.yyy:8443/svn,原下载到客户端电脑的svn不需要 ...

  8. QT LCDNumber使用

    新建一个QT工程 然后在cpp文件中写入代码 #include "hello.h" #include <qthread.h> #include <QVariant ...

  9. onCreateOptionsMenu

    onCreateOptionsMenu----只在Activity创建时调用一次!之后不会再被调用! onPrepareOptionsMenu----每次display menu之前,都會调用该方法, ...

  10. Java面向对象_继承——基本概念以及管理化妆品实例分析

    一.继承的基本概念: 1.继承是面向对象三大特征之一 2.被继承的类成为父类(超类),继承父类的类成为子类(派生类) 3.继承是指一个对象直接使用另一个对象的属性和方法 4.通过继承可以实现代码重用 ...