The Chinese Postman Problem

My Tags   (Edit)
  Source : bin3
  Time limit : 1 sec   Memory limit : 64 M

Submitted : 503, Accepted : 172

A Chinese postman is assigned to a small town in China to deliver letters. In this town, each street is oriented and connects exactly two junctions. The postman's task is to start at the post office and pass each street at least once to deliver letters. At last, he must return to the post office.

Can you help him to make sure whether there exist feasible routes for him and find the minimum distance from all the feasible routes.

Input

Input contains multiple test cases. The first line is an integer T, the number of test cases. Each case begins with two integers N, M, with 2 ≤ N ≤ 100, 1 ≤ M ≤ 2000, representing the number of junctions and the number of streets respectively.

Then M lines will follow, each denoting a street. A street is represented by three integers u, v, d, with 0 ≤ u, v < N, 0 < d ≤ 1000, meaning this street whose length is d connects the junction u and v and the postman can only travel from junction u to v. Junctions are numbered from 0 to N-1. Junction 0 is always the post office. Note that there may be more than one street connecting the same pair of junctions.

Output

Output one line for each test case. If there exist feasible routes for the postman, output the minimum distance. Otherwise, output -1.

Sample Input

3
2 1
0 1 3
4 4
0 1 1
1 2 2
2 3 3
3 0 4
4 7
0 1 1
1 2 2
2 3 3
3 0 4
1 3 5
3 1 2
1 3 2

Sample Output

-1
10
21

题目链接:HIT 2739

题意就是用最少的费用把所有边跑一边,并最终回到源点,这个跟欧拉回路有一点关系,有向图欧拉回路的充要条件就是所有点的出度和入度相等,并且基图要连通,这题的边方向已经是不能改的了,因此只能通过重复走来使得到达另一些重边,即多走几遍一些边,把某些点的出度和入度补成一样的,那么可以统计所有点的入度和出度之差记为$deg_i=in_i-out_i$,如果一个点$deg_i>0$,说明这个点的入度比较大,需要补充一些,因此要和源点连边;若$deg_i<0$即入度较大,则和汇点连边,这样一来就就可以构图使得流量从入度多的点流向出度多的点,平衡了入度和出度。

代码:

#include <stdio.h>
#include <algorithm>
#include <cstdlib>
#include <cstring>
#include <bitset>
#include <string>
#include <stack>
#include <cmath>
#include <queue>
#include <set>
#include <map>
using namespace std;
#define INF 0x3f3f3f3f
#define LC(x) (x<<1)
#define RC(x) ((x<<1)+1)
#define MID(x,y) ((x+y)>>1)
#define fin(name) freopen(name,"r",stdin)
#define fout(name) freopen(name,"w",stdout)
#define CLR(arr,val) memset(arr,val,sizeof(arr))
#define FAST_IO ios::sync_with_stdio(false);cin.tie(0);
typedef pair<int, int> pii;
typedef long long LL;
const double PI = acos(-1.0);
const int N = 110;
const int M = 2010;
struct edge
{
int to, nxt, cap, cost;
edge() {}
edge(int _to, int _nxt, int _cap, int _cost): to(_to), nxt(_nxt), cap(_cap), cost(_cost) {}
} E[(M + N) << 1];
int head[N], tot;
int d[N], pre[N], pat[N], mc, mf;
bitset<N>vis;
int n, m, deg[N]; void init()
{
CLR(head, -1);
tot = 0;
mc = mf = 0;
CLR(deg, 0);
}
inline void add(int s, int t, int cap, int cost)
{
E[tot] = edge(t, head[s], cap, cost);
head[s] = tot++;
E[tot] = edge(s, head[t], 0, -cost);
head[t] = tot++;
}
int spfa(int s, int t)
{
queue<int>Q;
Q.push(s);
CLR(d, INF);
vis.reset();
vis[s] = 1;
d[s] = 0;
while (!Q.empty())
{
int u = Q.front();
Q.pop();
vis[u] = 0;
for (int i = head[u]; ~i; i = E[i].nxt)
{
int v = E[i].to;
if (d[v] > d[u] + E[i].cost && E[i].cap > 0)
{
d[v] = d[u] + E[i].cost;
pre[v] = u;
pat[v] = i;
if (!vis[v])
{
vis[v] = 1;
Q.push(v);
}
}
}
}
return d[t] != INF;
}
void MCMF(int s, int t)
{
int i;
while (spfa(s, t))
{
int df = INF;
for (i = t; i != s; i = pre[i])
df = min(df, E[pat[i]].cap);
for (i = t; i != s; i = pre[i])
{
E[pat[i]].cap -= df;
E[pat[i] ^ 1].cap += df;
}
mf += df;
mc += df * d[t];
}
}
namespace DSU
{
int pre[N], num;
void init()
{
CLR(pre, -1);
num = n;
}
int Find(int n)
{
return pre[n] == -1 ? n : pre[n] = Find(pre[n]);
}
void Merge(int a, int b)
{
int fa = Find(a), fb = Find(b);
if (fa == fb)
return ;
pre[fb] = fa;
--num;
}
int isconnect()
{
return num == 1;
}
}
int main(void)
{
int T, a, b, w, i;
scanf("%d", &T);
while (T--)
{
init();
scanf("%d%d", &n, &m);
DSU::init();
int ori = 0;
for (i = 0; i < m; ++i)
{
scanf("%d%d%d", &a, &b, &w);
DSU::Merge(a, b);
add(a, b, INF, w);
ori += w;
--deg[a];
++deg[b];
}
if (!DSU::isconnect())
puts("-1");
else
{
int S = n, T = n + 1;
int sf = 0;
for (i = 0; i < n; ++i)
{
if (deg[i] > 0)
add(S, i, deg[i], 0);
else if (deg[i] < 0)
{
add(i, T, -deg[i], 0);
sf -= deg[i];
}
}
MCMF(S, T);
printf("%d\n", mf == sf ? mc + ori : -1);
}
}
return 0;
}

HITOJ 2739 The Chinese Postman Problem(欧拉回路+最小费用流)的更多相关文章

  1. HIT 2739 - The Chinese Postman Problem - [带权有向图上的中国邮路问题][最小费用最大流]

    题目链接:http://acm.hit.edu.cn/hoj/problem/view?id=2739 Time limit : 1 sec Memory limit : 64 M A Chinese ...

  2. The Chinese Postman Problem HIT - 2739(有向图中国邮路问题)

    无向图的问题,如果每个点的度数为偶数,则就是欧拉回路,而对于一个点只有两种情况,奇数和偶数,那么就把都为奇数的一对点  连一条  边权为原图中这两点最短路的值  的边  是不是就好了 无向图中国邮路问 ...

  3. HIT2739 The Chinese Postman Problem(最小费用最大流)

    题目大概说给一张有向图,要从0点出发返回0点且每条边至少都要走过一次,求走的最短路程. 经典的CPP问题,解法就是加边构造出欧拉回路,一个有向图存在欧拉回路的充分必要条件是基图连通且所有点入度等于出度 ...

  4. Chinese Postman Problem Aizu - DPL_2_B(无向图中国邮路问题)

    题意: 带权无向图上的中国邮路问题:一名邮递员需要经过每条边至少一次,最后回到出发点,一条边多次经过权值要累加,问最小总权值是多少.(2 <= N <= 15, 1 <= M < ...

  5. FZU - 2038 -E - Another Postman Problem (思维+递归+回溯)

    Chinese Postman Problem is a very famous hard problem in graph theory. The problem is to find a shor ...

  6. bzoj 1515 [POI2006]Lis-The Postman 有向图欧拉回路

    LINK:Lis-The Postman 看完题觉得 虽然容易发现是有向图欧拉回路 但是觉得很难解决这个问题. 先分析一下有向图的欧拉回路:充要条件 图中每个点的入度-出度=0且整张图是一个强连通分量 ...

  7. Soj题目分类

    -----------------------------最优化问题------------------------------------- ----------------------常规动态规划 ...

  8. LightOJ1086 Jogging Trails(欧拉回路+中国邮递员问题+SPFA)

    题目求从某点出发回到该点经过所有边至少一次的最短行程. 这个问题我在<图论算法理论.实现及应用>中看过,是一个经典的问题——中国邮递员问题(CPP, chinese postman pro ...

  9. 贪心算法:旅行商问题(TSP)

    TSP问题(Traveling Salesman Problem,旅行商问题),由威廉哈密顿爵士和英国数学家克克曼T.P.Kirkman于19世纪初提出.问题描述如下: 有若干个城市,任何两个城市之间 ...

随机推荐

  1. BZOJ2683: 简单题(cdq分治 树状数组)

    Time Limit: 50 Sec  Memory Limit: 128 MBSubmit: 2142  Solved: 874[Submit][Status][Discuss] Descripti ...

  2. 【动态规划】cf1034C. Region Separation

    质因数分解套路的复杂度分析的动态规划 题目大意 有一颗$n$个节点有点权的树,初始整棵树为$1$号区域,要求满足下列规则: 除非$i$是最后一个等级,否则每一个$i$级区域都要被分成至少两个$i+1$ ...

  3. C/C++程序基础 (十)模板和泛型

    什么是泛型编程 基于模板,有效将算法和数据结构分离. 模板 包括类型和参数 模板函数:抽象的函数定义,代表一类同构函数.编译器在其调用位置自动完成对应模板函数的实例化. 模板类:抽象的类定义,代表更高 ...

  4. Java的“Goto”与标签

    goto在Java中是一个保留字,但在语言中并没有用到它:Java没有goto.但是,Java也能完成一些类似于跳转的操作,主要是依靠:标签. 为什么要使用标签 在迭代语句中,我们可以使用break和 ...

  5. spring-bean(注解方式-管理及依赖注入)

    Bean管理(注解方式) 1.添加注解的依赖包:Spring-aop.jar 2.配置spring的XML文件的引入(查官方源码) 3.开启注解的扫描 <context:component-sc ...

  6. Linux问题分析或解决_ssh无法连接

    1. ldd - 检查依赖库是否存在问题 问题:ssh连接不上,之前一直没有问题,最近别人安装了其他桌面(系统Ubuntu) 解决: 查看进程,发现没有启动 ps -ef | grep ssh 重新安 ...

  7. docker简介以及优缺点

    1.docker简介 Docker 是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的Linux机器上,也可以实现虚拟化,容器是完全使用沙箱机制, ...

  8. 协议 - OSI七层网络协议模型

    摘自:https://www.cnblogs.com/oneplace/p/5611094.html 互联网协议 本文全文转载阮一峰老师的两篇文章,自己做了一些添加内容 参考:互联网协议入门(一) 互 ...

  9. aop设计原理

    本文摘自 博文--<Spring设计思想>AOP设计基本原理 0.前言 Spring 提供了AOP(Aspect Oriented Programming) 的支持, 那么,什么是AOP呢 ...

  10. PHP脚本执行效率性能检测之WebGrind的使用

    webgrind这个性能检测是需要xdebug来配合,因为webgrind 进行性能检测分析就是通过xdebug生成的日志文件进行编译分析的 那么这就需要们配置好xdebug,这个一般的php 版本都 ...