题目描述

在 W 星球上有 n 个国家。为了各自国家的经济发展,他们决定在各个国家 之间建设双向道路使得国家之间连通。但是每个国家的国王都很吝啬,他们只愿 意修建恰好 n – 1 条双向道路。 每条道路的修建都要付出一定的费用,这个费用等于道路长度乘以道路两端 的国家个数之差的绝对值。例如,在下图中,虚线所示道路两端分别有 2 个、4 个国家,如果该道路长度为 1,则费用为 1×|2 – 4|=2。图中圆圈里的数字表示国 家的编号。

由于国家的数量十分庞大,道路的建造方案有很多种,同时每种方案的修建 费用难以用人工计算,国王们决定找人设计一个软件,对于给定的建造方案,计 算出所需要的费用。请你帮助国王们设计一个这样的软件。

输入输出格式

输入格式:

输入的第一行包含一个整数 n,表示 W 星球上的国家的数量,国家从 1 到 n 编号。 接下来 n – 1 行描述道路建设情况,其中第 i 行包含三个整数 ai、bi和 ci,表 示第 i 条双向道路修建在 ai与 bi两个国家之间,长度为 ci。

输出格式:

输出一个整数,表示修建所有道路所需要的总费用。

输入输出样例

输入样例#1:

6
1 2 1
1 3 1
1 4 2
6 3 1
5 2 1
输出样例#1:

20

说明

1≤ai, bi≤n

0≤ci≤106

2≤n≤106

Solution:

  本题好水啊~

  我们不妨以$1$为根节点(反正无向连通),$dfs$一遍处理出每个节点子树大小$siz$。

  然后不难发现,根据题意一条边$e(u-v)$,则花费应该为$|(siz[1]-2*siz[v])|*w(u-v)$($siz[v]$为该边一边的节点数,$siz[1]-siz[v]$为另一边节点数,相减取绝对值,就是节点数之差),然后累加花费,标记一下该边已经计数。

  瞎搞一弃就好了。$`~`$

代码:

#include<bits/stdc++.h>
#define il inline
#define ll long long
#define For(i,a,b) for(int (i)=(a);(i)<=(b);(i)++)
using namespace std;
const int N=1e6+;
int n,to[N<<],net[N<<],w[N<<],h[N<<],siz[N],cnt;
ll ans;
bool vis[N]; il int gi(){
int a=;char x=getchar();bool f=;
while((x<''||x>'')&&x!='-')x=getchar();
if(x=='-')x=getchar(),f=;
while(x>=''&&x<='')a=(a<<)+(a<<)+x-,x=getchar();
return f?-a:a;
} il void add(int u,int v,int c){to[++cnt]=v,net[cnt]=h[u],h[u]=cnt,w[cnt]=c;} il void prepare(int u,int lst){
for(int i=h[u];i;i=net[i])
if(to[i]!=lst)prepare(to[i],u),siz[u]+=siz[to[i]];
} il void dfs(int x){
vis[x]=;
for(int i=h[x];i;i=net[i])
if(!vis[to[i]])ans+=abs(siz[]-*siz[to[i]])*1ll*w[i],dfs(to[i]);
} int main(){
n=gi();
int x,y,z;
For(i,,n)siz[i]=;
For(i,,n-){
x=gi(),y=gi(),z=gi();
add(x,y,z),add(y,x,z);
}
prepare(,);
For(i,,n) if(!vis[i])dfs(i);
cout<<ans;
return ;
}

P2052 [NOI2011]道路修建的更多相关文章

  1. P2052 [NOI2011]道路修建——树形结构(水题,大佬勿进)

    P2052 [NOI2011]道路修建 这个题其实在dfs里面就可以把事干完的,(我一开始还拿出来求了一把)…… 一条边的贡献就是儿子的大小和n-siz[v]乘上边权: #include<cma ...

  2. 洛谷P2052 [NOI2011]道路修建(树形DP)

    题目描述 在 W 星球上有 n 个国家.为了各自国家的经济发展,他们决定在各个国家 之间建设双向道路使得国家之间连通.但是每个国家的国王都很吝啬,他们只愿 意修建恰好 n – 1 条双向道路. 每条道 ...

  3. Luogu P2052 [NOI2011]道路修建

    吐槽一下 我开了\(-O2\)优化结果跑的更慢了什么鬼???!!! 我怕不是吸了一口毒氧气 不要脸的放上我的博客,欢迎大家前来面基 题目大意 给定一棵有\(n\)个节点的树,树中有\({n-1}\)条 ...

  4. bzoj 2435: [Noi2011]道路修建 树上 dp

    2435: [Noi2011]道路修建 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/pr ...

  5. NOI2011道路修建

    2435: [Noi2011]道路修建 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1974  Solved: 550[Submit][Status ...

  6. BZOJ 2435: [Noi2011]道路修建( dfs )

    NOI的水题...直接一遍DFS即可 ------------------------------------------------------------------------- #includ ...

  7. 2435: [Noi2011]道路修建

    2435: [Noi2011]道路修建 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2188  Solved: 639[Submit][Status ...

  8. BZOJ_2435_[Noi2011]道路修建_dfs

    BZOJ_2435_[Noi2011]道路修建_dfs 题意: http://www.lydsy.com/JudgeOnline/problem.php?id=2435 分析: dfs搞定. 我怕爆栈 ...

  9. BZOJ 2435: [Noi2011]道路修建 dfs搜图

    2435: [Noi2011]道路修建 Description 在 W 星球上有 n 个国家.为了各自国家的经济发展,他们决定在各个国家之间建设双向道路使得国家之间连通.但是每个国家的国王都很吝啬,他 ...

随机推荐

  1. 关于 ReactNative 环境搭建之 error: invalid developer directory '/Library/Developer/CommandLineTools' - RN

    简要说明,此次尝试安装 ReactNative 时当前 MacPro 版本为 10.13.6.Xcode 版本为 Version 9.4.1 (9F2000),按照官方的完整原生环境搭建流程一步步执行 ...

  2. iOS开发网络缓存原理

    一.关于同一个URL的多次请求 有时候,对同一个URL请求多次,返回的数据可能都是一样的,比如服务器上的某张图片,无论下载多少次,返回的数据都是一样的. 上面的情况会造成以下问题 (1)用户流量的浪费 ...

  3. 路由传参,path和query的刷新报错js文件丢失

    日常的路由跳转,基本都会用到传参,有两种方式:path + query, name + params 常用的写法: this.$router.push({ path: 'proDetail',quer ...

  4. 基于 win7下虚拟机的 GNSS-SDR安装过程

    最近在安装 GNSS-SDR软件时,遇到了很多问题,这里回顾了我的安装过程,罗列了所遇到的问题和解决办法.希望后来者不要再踩这些坑了! 首先,在官方文档中看到,GNSS-SDR目前并不支持直接在 Wi ...

  5. Centos下使用Docker部署asp.net core项目

    本文讲述 CentOS 系统 Docker 中部署 asp.net core开源项目 abp 的过程 步骤 1. 拉取 asp.net core 基础镜像 docker pull microsoft/ ...

  6. juicer

    function financingBodyTable(){ var jsonData = { FinancingBodyJSON:${relaListArr}//list数组 } var addMo ...

  7. Python元组,列表,字典,集合

    1.元组 元组是有序的,只有index和count两种方法,一看到元组,就提醒是不可更改的 names = ('wll', 'ly', 'jxx', 'syq') (1)index方法 print(n ...

  8. python——matplotlib图像的基本处理

    1.绘制图像中的点和线 from PIL import Image from pylab import * im = array(Image.open('E:\Python\meinv.jpg')) ...

  9. Weblogic Linux jar包安装

    环境/工具: 系统:CentOS 7 JDK:Oracle JDK fmw_12.2.1.2.0_wls.jar 0x01.新建普通用户weblogic 在Linux环境下建议使用普通用户安装,web ...

  10. P2183 巧克力(二分答案)

    P2183 巧克力 题目描述 佳佳邀请了M个同学到家里玩.为了招待客人,她需要将巧克力分给她的好朋友们.她有N(1<=N<=5000)块巧克力,但是大小各不一样,第i块巧克力大小为为1*X ...