Power Network
Time Limit: 2000MS   Memory Limit: 32768K
Total Submissions: 24930   Accepted: 12986

Description

A power network consists of nodes (power stations, consumers and dispatchers) connected by power transport lines. A node u may be supplied with an amount s(u) >= 0 of power, may produce an amount 0 <= p(u) <= pmax(u) of power, may consume an amount 0 <= c(u) <= min(s(u),cmax(u)) of power, and may deliver an amount d(u)=s(u)+p(u)-c(u) of power. The following restrictions apply: c(u)=0 for any power station, p(u)=0 for any consumer, and p(u)=c(u)=0 for any dispatcher. There is at most one power transport line (u,v) from a node u to a node v in the net; it transports an amount 0 <= l(u,v) <= lmax(u,v) of power delivered by u to v. Let Con=Σuc(u) be the power consumed in the net. The problem is to compute the maximum value of Con.


An example is in figure 1. The label x/y of power station u shows that p(u)=x and pmax(u)=y. The label x/y of consumer u shows that c(u)=x and cmax(u)=y. The label x/y of power transport line (u,v) shows that l(u,v)=x and lmax(u,v)=y.
The power consumed is Con=6. Notice that there are other possible
states of the network but the value of Con cannot exceed 6.

Input

There
are several data sets in the input. Each data set encodes a power
network. It starts with four integers: 0 <= n <= 100 (nodes), 0
<= np <= n (power stations), 0 <= nc <= n (consumers), and 0
<= m <= n^2 (power transport lines). Follow m data triplets
(u,v)z, where u and v are node identifiers (starting from 0) and 0 <=
z <= 1000 is the value of lmax(u,v). Follow np doublets (u)z, where u is the identifier of a power station and 0 <= z <= 10000 is the value of pmax(u).
The data set ends with nc doublets (u)z, where u is the identifier of a
consumer and 0 <= z <= 10000 is the value of cmax(u).
All input numbers are integers. Except the (u,v)z triplets and the (u)z
doublets, which do not contain white spaces, white spaces can occur
freely in input. Input data terminate with an end of file and are
correct.

Output

For
each data set from the input, the program prints on the standard output
the maximum amount of power that can be consumed in the corresponding
network. Each result has an integral value and is printed from the
beginning of a separate line.

Sample Input

2 1 1 2 (0,1)20 (1,0)10 (0)15 (1)20
7 2 3 13 (0,0)1 (0,1)2 (0,2)5 (1,0)1 (1,2)8 (2,3)1 (2,4)7
(3,5)2 (3,6)5 (4,2)7 (4,3)5 (4,5)1 (6,0)5
(0)5 (1)2 (3)2 (4)1 (5)4

Sample Output

15
6

Hint

The sample input contains two data sets. The first data set encodes a network with 2 nodes, power station 0 with pmax(0)=15 and consumer 1 with cmax(1)=20, and 2 power transport lines with lmax(0,1)=20 and lmax(1,0)=10. The maximum value of Con is 15. The second data set encodes the network from figure 1.

Source

题意:
给几个发电站,给几个消耗站,再给几个转发点。
发电站只发电,消耗站只消耗电,转发点只是转发电,再给各个传送线的传电能力。
问你消耗站能获得的最多电是多少。

思路:增加一个超级源点,和超级汇点。。把所给的发电站都和超级源点相连,把所给的消耗战都和超级汇点相连。。用EK求最大流。

#include<stdio.h>
#include<string.h>
#include<queue>
#include<iostream>
#include<algorithm>
using namespace std;
int start,end;
int edge[][];
bool vis[];
int low[],head[]; int bfs(){
memset(head,-,sizeof(head));
memset(vis,false,sizeof(vis));
memset(low,-,sizeof(low));
head[start]=;
vis[start]=true;
low[start]=0x7fffffff;
queue<int>q;
q.push(start) ;
while(!q.empty()){
int u=q.front();
q.pop();
for(int i=start;i<=end;i++){
if(!vis[i]&&edge[u][i]){
head[i]=u;
vis[i]=true;
low[i]=min(low[u],edge[u][i]);
q.push(i);
}
} }
if(low[end]!=-)
return low[end];
else
return ;
} int getmax(){
int total=;
int minflow;
while(minflow=bfs()){
for(int i=end;i!=start;i=head[i]){
edge[head[i]][i]-=minflow;
edge[i][head[i]]+=minflow; }
total+=minflow;
}
return total;
} int main(){
int n,np,nc,m;
while(scanf("%d%d%d%d",&n,&np,&nc,&m)!=EOF){
int u,v,w;
memset(edge,,sizeof(edge));
for(int i=;i<=m;i++){
scanf(" (%d,%d)%d",&u,&v,&w);
edge[u+][v+]+=w;
}
for(int i=;i<=np;i++){
scanf(" (%d)%d",&u,&w);
edge[][u+]+=w;
}
for(int i=;i<=nc;i++){
scanf(" (%d)%d",&v,&w);
edge[v+][n+]+=w;
}
start=;
end=n+;
int ans=getmax();
printf("%d\n",ans);
}
return ;
}

poj 1459 网络流问题`EK的更多相关文章

  1. POJ 1459 网络流 EK算法

    题意: 2 1 1 2 (0,1)20 (1,0)10 (0)15 (1)20 2 1 1 2 表示 共有2个节点,生产能量的点1个,消耗能量的点1个, 传递能量的通道2条:(0,1)20 (1,0) ...

  2. Power Network POJ - 1459 [网络流模板]

    http://poj.org/problem?id=1459 嗯,网络流模板...多源点多汇点的图,超级汇点连发电厂,用户连接超级汇点 Status Accepted Time 391ms Memor ...

  3. Power Network (poj 1459 网络流)

    Language: Default Power Network Time Limit: 2000MS   Memory Limit: 32768K Total Submissions: 23407   ...

  4. Power Network POJ - 1459 网络流 DInic 模板

    #include<cstring> #include<cstdio> #define FOR(i,f_start,f_end) for(int i=f_startl;i< ...

  5. poj 1459(网络流)

    Power Network Time Limit: 2000MS   Memory Limit: 32768K Total Submissions: 26688   Accepted: 13874 D ...

  6. POJ 1459 Power Network / HIT 1228 Power Network / UVAlive 2760 Power Network / ZOJ 1734 Power Network / FZU 1161 (网络流,最大流)

    POJ 1459 Power Network / HIT 1228 Power Network / UVAlive 2760 Power Network / ZOJ 1734 Power Networ ...

  7. poj 1459 多源多汇点最大流

    Sample Input 2 1 1 2 (0,1)20 (1,0)10 (0)15 (1)20 7 2 3 13 (0,0)1 (0,1)2 (0,2)5 (1,0)1 (1,2)8 (2,3)1 ...

  8. 网络流之最大流EK --- poj 1459

    题目链接 本篇博客延续上篇博客(最大流Dinic算法)的内容,此次使用EK算法解决最大流问题. EK算法思想:在图中搜索一条从源点到汇点的扩展路,需要记录这条路径,将这条路径的最大可行流量 liu 增 ...

  9. Poj(1459),最大流,EK算法

    题目链接:http://poj.org/problem?id=1459 Power Network Time Limit: 2000MS   Memory Limit: 32768K Total Su ...

随机推荐

  1. 移动页面请使用CSS3动画

    说到动画,我们一般会使用jQuery 中的animate(); 在PC浏览器中,是很方便的,由于PC的高性能,这种不断修改DOM的做法确实不会出现太大的问题,但是在手机端就不同了. 手机上使用jQue ...

  2. js控制select选中显示不同表单内容

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  3. 搭建大众点评CAT监控平台

    CAT(Central Application Tracking)是基于Java开发的实时应用监控平台,包括实时应用监控,业务监控.关于CAT的具体介绍可移步到CAT官网进行查阅. 1. 环境清单 C ...

  4. JS底层挖掘

    //Promise版本的Ajaxconst getJSON = function(url) { const promise =new Promise(function(resolve, reject) ...

  5. 深入浅出:了解jsonp跨域的九种方式

    什么是“”跨域”: 跨域访问,简单来说就是 A 网站的 javascript 代码试图访问 B 网站,包括提交内容和获取内容.由于安全原因,跨域访问是被各大浏览器所默认禁止的.当一个域与其他域建立了信 ...

  6. codeforces757E. Bash Plays with Functions(狄利克雷卷积 积性函数)

    http://codeforces.com/contest/757/problem/E 题意 Sol 非常骚的一道题 首先把给的式子化一下,设$u = d$,那么$v = n / d$ $$f_r(n ...

  7. lintcode_93_平衡二叉树

    平衡二叉树   描述 笔记 数据 评测 给定一个二叉树,确定它是高度平衡的.对于这个问题,一棵高度平衡的二叉树的定义是:一棵二叉树中每个节点的两个子树的深度相差不会超过1. 您在真实的面试中是否遇到过 ...

  8. vim指令,快捷键汇总

    Vim 命令.操作.快捷键全集 命令历史 以:和/开头的命令都有历史纪录,可以首先键入:或/然后按上下箭头来选择某个历史命令. 启动vim 在命令行窗口中输入以下命令即可 vim 直接启动vim vi ...

  9. jquery 改变标签可见状态的几种方式

    第一种: $(selector).show(); //立即显示指定标签 $(selector).hide();//立即隐藏指定标签 第二种: $(selector).fadeIn(ms);//在指定毫 ...

  10. float元素浮动后高度不一致导致错位的解决办方法

    换行开始的第一个元素clear:left;即可 例如  四列时应该时第5个,9个...加clear:left; .row .col-lg-3:nth-child(4n+1),.row .col-md- ...