yum -y install gearmand
chkconfig gearmand on && /etc/init.d/gearmand start # /etc/sysconfig/gearmand
指定 OPTIONS=""里的内容,添加持久性等功能

example

worker.py

#!/usr/bin/env python
# -*- encoding: utf-8; py-indent-offset: 4 -*- import gearman gm_worker = gearman.GearmanWorker(['localhost:4730']) def task_listener_reverse(gearman_worker, gearman_job):
print 'Reversing string: ' + gearman_job.data
return gearman_job.data[::-1] # gm_worker.set_client_id is optional
gm_worker.set_client_id('python-worker')
gm_worker.register_task('reverse', task_listener_reverse) # Enter our work loop and call gm_worker.after_poll() after each time we timeout/see socket activity
gm_worker.work()

client.py

#!/usr/bin/env python
# -*- encoding: utf-8; py-indent-offset: 4 -*- import gearman def check_request_status(job_request):
if job_request.complete:
print "Job %s finished! Result: %s - %s" % (job_request.job.unique, job_request.state, job_request.result)
elif job_request.timed_out:
print "Job %s timed out!" % job_request.unique
elif job_request.state == JOB_UNKNOWN:
print "Job %s connection failed!" % job_request.unique gm_client = gearman.GearmanClient(['localhost:4730']) completed_job_request = gm_client.submit_job("reverse", "Hello World!")
check_request_status(completed_job_request)

results

python client.py
# Job b5175e15d8e09ba6470cbedb4b6e2b1a finished! Result: COMPLETE - !dlroW olleH python worker.py
# Reversing string: Hello World!

API

Gearman worker

class gearman.worker.GearmanWorker(host_list=None)
GearmanWorker :: Interface to accept jobs from a Gearman server

1 Job processing

GearmanWorker.set_client_id(client_id)
# Notify the server that we should be identified as this client ID GearmanWorker.register_task(task, callback_function)
# Register a function with this worker def function_callback(calling_gearman_worker, current_job):
return current_job.data GearmanWorker.unregister_task(task)
# Unregister a function with worker GearmanWorker.work(poll_timeout=60.0)
# Loop indefinitely, complete tasks from all connections.
# example
gm_worker = gearman.GearmanWorker(['localhost:4730']) # See gearman/job.py to see attributes on the GearmanJob
# Send back a reversed version of the 'data' string
def task_listener_reverse(gearman_worker, gearman_job):
return reversed(gearman_job.data) # gm_worker.set_client_id is optional
gm_worker.set_client_id('your_worker_client_id_name')
gm_worker.register_task('reverse', task_listener_reverse) # Enter our work loop and call gm_worker.after_poll() after each time we timeout/see socket activity
gm_worker.work()

2 Sending in-flight job updates

GearmanWorker.send_job_data(current_job, data, poll_timeout=None)
# Send a Gearman JOB_DATA update for an inflight job GearmanWorker.send_job_status(current_job, numerator, denominator, poll_timeout=None)
# Send a Gearman JOB_STATUS update for an inflight job GearmanWorker.send_job_warning(current_job, data, poll_timeout=None)
# Send a Gearman JOB_WARNING update for an inflight job
# example
Callback function sending back inflight job updates: gm_worker = gearman.GearmanWorker(['localhost:4730']) # See gearman/job.py to see attributes on the GearmanJob
# Send back a reversed version of the 'data' string through WORK_DATA instead of WORK_COMPLETE
def task_listener_reverse_inflight(gearman_worker, gearman_job):
reversed_data = reversed(gearman_job.data)
total_chars = len(reversed_data) for idx, character in enumerate(reversed_data):
gearman_worker.send_job_data(gearman_job, str(character))
gearman_worker.send_job_status(gearman_job, idx + 1, total_chars) return None # gm_worker.set_client_id is optional
gm_worker.register_task('reverse', task_listener_reverse_inflight) # Enter our work loop and call gm_worker.after_poll() after each time we timeout/see socket activity
gm_worker.work()

3 Extending the worker

GearmanWorker.data_encoder
# Provide common object dumps for all communications over gearman GearmanWorker.after_poll(any_activity)
# Polling callback to notify any outside listeners whats going on with the GearmanWorker. Return True to continue polling, False to exit the work loop
# example
Send/receive Python objects and do work between polls: # By default, GearmanWorker's can only send off byte-strings
# If we want to be able to send out Python objects, we can specify a data encoder
# This will automatically convert byte strings <-> Python objects for ALL commands that have the 'data' field
#
# See http://gearman.org/index.php?id=protocol for Worker commands that send/receive 'opaque data'
#
import json # Or similarly styled library
class JSONDataEncoder(gearman.DataEncoder):
@classmethod
def encode(cls, encodable_object):
return json.dumps(encodable_object) @classmethod
def decode(cls, decodable_string):
return json.loads(decodable_string) class DBRollbackJSONWorker(gearman.GearmanWorker):
data_encoder = JSONDataEncoder def after_poll(self, any_activity):
# After every select loop, let's rollback our DB connections just to be safe
continue_working = True
self.db_connections.rollback()
return continue_working

Gearman client

 def check_request_status(job_request):
if job_request.complete:
print "Job %s finished! Result: %s - %s" % (job_request.job.unique, job_request.state, job_request.result)
elif job_request.timed_out:
print "Job %s timed out!" % job_request.unique
elif job_request.state == JOB_UNKNOWN:
print "Job %s connection failed!" % job_request.unique class gearman.client.GearmanClient(host_list=None, random_unique_bytes=16)
# GearmanClient :: Interface to submit jobs to a Gearman server

1 Submitting jobs

GearmanClient.submit_job(task, data, unique=None, priority=None, background=False, wait_until_complete=True, max_retries=0, poll_timeout=None)
# Submit a single job to any gearman server
# example
Sending a simple job as a blocking call:
gm_client = gearman.GearmanClient(['localhost:4730', 'otherhost:4730']) # See gearman/job.py to see attributes on the GearmanJobRequest
# Defaults to PRIORITY_NONE, background=False (synchronous task), wait_until_complete=True
completed_job_request = gm_client.submit_job("task_name", "arbitrary binary data")
check_request_status(completed_job_request) Sending a high priority, background, blocking call:
gm_client = gearman.GearmanClient(['localhost:4730', 'otherhost:4730']) # See gearman/job.py to see attributes on the GearmanJobRequest
submitted_job_request = gm_client.submit_job("task_name", "arbitrary binary data", priority=gearman.PRIORITY_HIGH, background=True) check_request_status(submitted_job_request)
GearmanClient.submit_multiple_jobs(jobs_to_submit, background=False, wait_until_complete=True, max_retries=0, poll_timeout=None)
Takes a list of jobs_to_submit with dicts of {‘task’: task, ‘data’: data, ‘unique’: unique, ‘priority’: priority}
# example
Sending multiple jobs all at once and behave like a non-blocking call (wait_until_complete=False): import time
gm_client = gearman.GearmanClient(['localhost:4730']) list_of_jobs = [dict(task="task_name", data="binary data"), dict(task="other_task", data="other binary data")]
submitted_requests = gm_client.submit_multiple_jobs(list_of_jobs, background=False, wait_until_complete=False) # Once we know our jobs are accepted, we can do other stuff and wait for results later in the function
# Similar to multithreading and doing a join except this is all done in a single process
time.sleep(1.0) # Wait at most 5 seconds before timing out incomplete requests
completed_requests = gm_client.wait_until_jobs_completed(submitted_requests, poll_timeout=5.0)
for completed_job_request in completed_requests:
check_request_status(completed_job_request)
GearmanClient.submit_multiple_requests(job_requests, wait_until_complete=True, poll_timeout=None)
# Take GearmanJobRequests, assign them connections, and request that they be done. Blocks until our jobs are accepted (should be fast) OR times out
Optionally blocks until jobs are all complete
You MUST check the status of your requests after calling this function as “timed_out” or “state == JOB_UNKNOWN” maybe True
# example
Recovering from failed connections: import time
gm_client = gearman.GearmanClient(['localhost:4730']) list_of_jobs = [dict(task="task_name", data="task binary string"), dict(task="other_task", data="other binary string")]
failed_requests = gm_client.submit_multiple_jobs(list_of_jobs, background=False) # Let's pretend our assigned requests' Gearman servers all failed
assert all(request.state == JOB_UNKNOWN for request in failed_requests), "All connections didn't fail!" # Let's pretend our assigned requests' don't fail but some simply timeout
retried_connection_failed_requests = gm_client.submit_multiple_requests(failed_requests, wait_until_complete=True, poll_timeout=1.0) timed_out_requests = [job_request for job_request in retried_requests if job_request.timed_out] # For our timed out requests, lets wait a little longer until they're complete
retried_timed_out_requests = gm_client.submit_multiple_requests(timed_out_requests, wait_until_complete=True, poll_timeout=4.0)
GearmanClient.wait_until_jobs_accepted(job_requests, poll_timeout=None)
# Go into a select loop until all our jobs have moved to STATE_PENDING
GearmanClient.wait_until_jobs_completed(job_requests, poll_timeout=None)
# Go into a select loop until all our jobs have completed or failed

2 Retrieving job status

GearmanClient.get_job_status(current_request, poll_timeout=None)
# Fetch the job status of a single request GearmanClient.get_job_statuses(job_requests, poll_timeout=None)
#Fetch the job status of a multiple requests

3 Extending the client

GearmanClient.data_encoder
# Provide common object dumps for all communications over gearman
# example
Send/receive Python objects (not just byte strings): # By default, GearmanClient's can only send off byte-strings
# If we want to be able to send out Python objects, we can specify a data encoder
# This will automatically convert byte strings <-> Python objects for ALL commands that have the 'data' field
#
# See http://gearman.org/index.php?id=protocol for client commands that send/receive 'opaque data'
import pickle class PickleDataEncoder(gearman.DataEncoder):
@classmethod
def encode(cls, encodable_object):
return pickle.dumps(encodable_object) @classmethod
def decode(cls, decodable_string):
return pickle.loads(decodable_string) class PickleExampleClient(gearman.GearmanClient):
data_encoder = PickleDataEncoder my_python_object = {'hello': 'there'} gm_client = PickleExampleClient(['localhost:4730'])
gm_client.submit_job("task_name", my_python_object)

Gearman Admin client

class gearman.admin_client.GearmanAdminClient(host_list=None, poll_timeout=10.0)
GearmanAdminClient :: Interface to send/receive administrative commands to a Gearman server This client acts as a BLOCKING client and each call will poll until it receives a satisfactory server response http://gearman.org/index.php?id=protocol See section ‘Administrative Protocol’

1 Interacting with a server

GearmanAdminClient.send_maxqueue(task, max_size)
# Sends a request to change the maximum queue size for a given task GearmanAdminClient.send_shutdown(graceful=True)
# Sends a request to shutdown the connected gearman server GearmanAdminClient.get_status()
# Retrieves a list of all registered tasks and reports how many items/workers are in the queue GearmanAdminClient.get_version()
# Retrieves the version number of the Gearman server GearmanAdminClient.get_workers()
# Retrieves a list of workers and reports what tasks they’re operating on
# example
Checking server state: gm_admin_client = gearman.GearmanAdminClient(['localhost:4730']) # Inspect server state
status_response = gm_admin_client.get_status()
version_response = gm_admin_client.get_version()
workers_response = gm_admin_client.get_workers()

2 Testing server response times

GearmanAdminClient.ping_server()
# Sends off a debugging string to execute an application ping on the Gearman server
# example
Checking server response time: gm_admin_client = gearman.GearmanAdminClient(['localhost:4730'])
response_time = gm_admin_client.ping_server()

Gearman job definitions

1 GearmanJob - Basic information about a requested job

class gearman.job.GearmanJob(connection, handle, task, unique, data)
# Represents the basics of a job... used in GearmanClient / GearmanWorker to represent job states

1.1 Server identifers

GearmanJob.connection
# GearmanConnection - Server assignment. Could be None prior to client job submission GearmanJob.handle
# string - Job’s server handle. Handles are NOT interchangeable across different gearman servers

1.2 Job parameters

GearmanJob.task
# string - Job’s task GearmanJob.unique
# string - Job’s unique identifier (client assigned) GearmanJob.data
# binary - Job’s binary payload

2 GearmanJobRequest - State tracker for requested jobs

class gearman.job.GearmanJobRequest(gearman_job, initial_priority=None, background=False, max_attempts=1)
# Represents a job request... used in GearmanClient to represent job states

2.1 Tracking job submission

GearmanJobRequest.gearman_job
# GearmanJob - Job that is being tracked by this GearmanJobRequest object GearmanJobRequest.priority
# PRIORITY_NONE [default]
# PRIORITY_LOW
# PRIORITY_HIGH GearmanJobRequest.background
# boolean - Is this job backgrounded? GearmanJobRequest.connection_attempts
# integer - Number of attempted connection attempts GearmanJobRequest.max_connection_attempts
# integer - Maximum number of attempted connection attempts before raising an exception

2.2 Tracking job progress

GearmanJobRequest.result
# binary - Job’s returned binary payload - Populated if and only if JOB_COMPLETE GearmanJobRequest.exception
# binary - Job’s exception binary payload GearmanJobRequest.state
# JOB_UNKNOWN - Request state is currently unknown, either unsubmitted or connection failed
# JOB_PENDING - Request has been submitted, pending handle
# JOB_CREATED - Request has been accepted
# JOB_FAILED - Request received an explicit job failure (job done but errored out)
# JOB_COMPLETE - Request received an explicit job completion (job done with results) GearmanJobRequest.timed_out
# boolean - Did the client hit its polling_timeout prior to a job finishing? GearmanJobRequest.complete
# boolean - Does the client need to continue to poll for more updates from this job?

2.3 Tracking in-flight job updates

Certain GearmanJob’s may send back data prior to actually completing. GearmanClient uses these queues to keep track of what/when we received certain updates.

GearmanJobRequest.warning_updates
# collections.deque - Job’s warning binary payloads GearmanJobRequest.data_updates
# collections.deque - Job’s data binary payloads GearmanJobRequest.status¶
# dictionary - Job’s status handle - string - Job handle
# known - boolean - Is the server aware of this request?
# running - boolean - Is the request currently being processed by a worker?
# numerator - integer
# denominator - integer
# time_received - integer - Time last updated New in version 2.0.1: Replaces GearmanJobRequest.status_updates and GearmanJobRquest.server_status GearmanJobRequest.status_updates
# Deprecated since version 2.0.1: Replaced by GearmanJobRequest.status GearmanJobRequest.server_status
# Deprecated since version 2.0.1: Replaced by GearmanJobRequest.status

python-gearman使用的更多相关文章

  1. gearman background后台job状态获取

    GearmanClient background job有一个方法叫: public array GearmanClient::jobStatus ( string $job_handle ) Get ...

  2. 分布式任务系统gearman的python实战

    Gearman是一个用来把工作委派给其他机器.分布式的调用更适合做某项工作的机器.并发的做某项工作在多个调用间做负载均衡.或用来在调用其它语言的函数的系统.Gearman是一个分发任务的程序框架,可以 ...

  3. 【python】gearman阻塞非阻塞,同步/异步,状态

    参考: http://pythonhosted.org/gearman/client.html?highlight=submit_multiple_jobs#gearman.client.Gearma ...

  4. 用 Gearman 分发 PHP 应用程序的工作负载

    尽管一个 Web 应用程序的大部分内容都与表示有关,但它的价值与竞争优势却可能体现在若干专有服务或算法方面.如果这类处理过于复杂或拖沓,最好是进行异步执行,以免 Web 服务器对传入的请求没有响应.实 ...

  5. 任务分发系统gearman

    1 Gearman是什么 Gearman Job Server@http://gearman.org/. Gearman 是一个任务分发系统,它提供了一个分发框架,能够分发某类任务到更适合处理这类任务 ...

  6. Gearman + Nodejs + MySQL UDF异步实现 MySQL 到 Redis 的数据同步

    [TOC] 1, 环境 CentOS, MySQL, Redis, Nodejs 2, Redis简介 Redis是一个开源的K-V内存数据库,它的key可以是string/set/hash/list ...

  7. gearman with postgresql as persistent Queuing

    gearman is a good thing gearman client --------------> gearman server <----------------------- ...

  8. 156个Python网络爬虫资源

    本列表包含Python网页抓取和数据处理相关的库. 网络相关 通用 urllib - 网络库(标准库) requests - 网络库 grab - 网络库(基于pycurl) pycurl - 网络库 ...

  9. gearman学习笔记1

    1.简介       gearman是一个分布式开发框架,适合处理一些必须处理但是不影响主流程的操作,比如保存日志.发送邮件.缩略图片等.最早是基于perl语言的,2008年发布的时候改为C++语言开 ...

  10. 【转】Python 爬虫的工具列表【预】

    这个列表包含与网页抓取和数据处理的Python库 网络 通用 urllib -网络库(stdlib). requests -网络库. grab – 网络库(基于pycurl). pycurl – 网络 ...

随机推荐

  1. vue 学习一

    这个是很早之前公司要使用vue.js时候学习记在有道云笔记上的,发觉那个笔记贼多了,没办法,觉得是要换个地方存笔记了, 一vue.js的使用: 可以在页面是直接使用: <!DOCTYPE htm ...

  2. STP-6-快速生成树协议-新端口角色,状态和类型以及新链路类型

      IEEE 802.1w快速生成树协议(RSTP)增强了802.1D标准,在设计合理的网络中收敛时间远少于1秒.   端口状态从5个减少到3个 丢弃状态是在端口刚启用时的默认状态,边界端口除外,它的 ...

  3. apache 日志分割

    Window apache 全局设置日志分割   apache  [ httpd.conf ] 配置文件 开启日志模块:LoadModule log_config_module modules/mod ...

  4. Linux 磁盘 分区 挂载点的理解

    在Linux中一切皆文件: 虚拟文件系统(Virtual File System, 简称 VFS), 是 Linux 内核中的一个软件层,用于给用户空间的程序提供文件系统接口:同时,它也提供了内核中的 ...

  5. vs如何在Windows身份验证下调试Web项目

    vs做的Web项目发布到IIS站点后,通常我们还希望利用vs来调试代码.如果Web在IIS中设置成了Windows身份验证,那么我们如何在vs调试的时候,也同样采用Windows身份认证进行调试呢? ...

  6. 牛客Professional Manager(并查集)

    t’s universally acknowledged that there’re innumerable trees in the campus of HUST.  Thus a professi ...

  7. 关于string 的简单应用

    声明||作用 string类本不是STL的容器,但是它与STL容器有着很多相似的操作,因此,把string放在这里一起进行介绍. 之所以抛弃char*的字符串而选用C++标准程序库中的string类, ...

  8. java mybatis学习一

    1.引入maven包 和 导入 sqljdbc包 <dependency> <groupId>org.apache.ibatis</groupId> <art ...

  9. html一些常用的符号

    <    :    < >    :    > &    :    & "     :    " @   :    © ®    :     ...

  10. js中url有中文的转码方法

    转载:https://www.cnblogs.com/chiangfai/p/6073000.html