题目描述:给定一个序列,要把它分成k个子序列。每个子序列的费用是其中相同元素的对数。求所有子序列的费用之和的最小值。

输入格式:第一行输入n(序列长度)和k(需分子序列段数)。下一行有n个数,序列的每一个元素。

输出格式:输出一个数,费用和的最小值。

2<=n<=10^5,2<=k<=min(n,20),序列的每一个元素值大于等于1,小于等于n。

决策单调性到底是个什么神仙……

这题用分治做决策单调性……

问题是我连题解都看不懂……

米娜桑自己看题解吧,如果有会了的麻烦教我一下……->这里

 //minamoto
#include<iostream>
#include<cstdio>
#include<cstring>
#define ll long long
using namespace std;
#define getc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
char buf[<<],*p1=buf,*p2=buf;
inline int read(){
#define num ch-'0'
char ch;bool flag=;int res;
while(!isdigit(ch=getc()))
(ch=='-')&&(flag=true);
for(res=num;isdigit(ch=getc());res=res*+num);
(flag)&&(res=-res);
#undef num
return res;
}
const int N=1e5+;
int a[N],c[N],n,k;
ll ff[N],gg[N],*f=ff,*g=gg;
void solve(int l,int r,int kl,int kr,ll w){
if(l>r) return;
int m=l+r>>,k=,p=m<kr?m:kr;
for(int i=l;i<=m;++i) w+=c[a[i]]++;
for(int i=kl;i<=p;++i) w-=--c[a[i]],g[m]>f[i]+w?g[m]=f[i]+w,k=i:;
for(int i=kl;i<=p;++i) w+=c[a[i]]++;
for(int i=l;i<=m;++i) w-=--c[a[i]];
solve(l,m-,kl,k,w);
for(int i=l;i<=m;++i) w+=c[a[i]]++;
for(int i=kl;i<k;++i) w-=--c[a[i]];
solve(m+,r,k,kr,w);
for(int i=kl;i<k;++i) ++c[a[i]];
for(int i=l;i<=m;++i) --c[a[i]];
}
int main(){
//freopen("testdata.in","r",stdin);
n=read(),k=read();
ll *tmp;
for(int i=;i<=n;++i) f[i]=f[i-]+c[a[i]=read()]++;
memset(c,,sizeof(c));
while(--k){
memset(g,,(n+)<<);
solve(,n,,n,);
tmp=f,f=g,g=tmp;
}
printf("%lld\n",f[n]);
return ;
}

CF868F Yet Another Minimization Problem(决策单调性)的更多相关文章

  1. cf868F. Yet Another Minimization Problem(决策单调性 分治dp)

    题意 题目链接 给定一个长度为\(n\)的序列.你需要将它分为\(m\)段,每一段的代价为这一段内相同的数的对数,最小化代价总和. \(n<=10^5,m<=20\) Sol 看完题解之后 ...

  2. Codeforces 868F Yet Another Minimization Problem 决策单调性 (看题解)

    Yet Another Minimization Problem dp方程我们很容易能得出, f[ i ] = min(g[ j ] + w( j + 1, i )). 然后感觉就根本不能优化. 然后 ...

  3. CodeForces 868F Yet Another Minimization Problem(决策单调性优化 + 分治)

    题意 给定一个序列 \(\{a_1, a_2, \cdots, a_n\}\),要把它分成恰好 \(k\) 个连续子序列. 每个连续子序列的费用是其中相同元素的对数,求所有划分中的费用之和的最小值. ...

  4. CF868 F. Yet Another Minimization Problem 决策单调优化 分治

    目录 题目链接 题解 代码 题目链接 CF868F. Yet Another Minimization Problem 题解 \(f_{i,j}=\min\limits_{k=1}^{i}\{f_{k ...

  5. CF868F Yet Another Minimization Problem 分治决策单调性优化DP

    题意: 给定一个序列,你要将其分为k段,总的代价为每段的权值之和,求最小代价. 定义一段序列的权值为$\sum_{i = 1}^{n}{\binom{cnt_{i}}{2}}$,其中$cnt_{i}$ ...

  6. 洛谷CF868F Yet Another Minimization Problem(动态规划,决策单调性,分治)

    洛谷题目传送门 貌似做所有的DP题都要先搞出暴力式子,再往正解上靠... 设\(f_{i,j}\)为前\(i\)个数分\(j\)段的最小花费,\(w_{l,r}\)为\([l,r]\)全在一段的费用. ...

  7. CF868F Yet Another Minimization Problem

    题目描述: 给定一个序列,要把它分成k个子序列.每个子序列的费用是其中相同元素的对数.求所有子序列的费用之和的最小值. 输入格式:第一行输入n(序列长度)和k(需分子序列段数).下一行有n个数,序列的 ...

  8. DP的各种优化(动态规划,决策单调性,斜率优化,带权二分,单调栈,单调队列)

    前缀和优化 当DP过程中需要反复从一个求和式转移的话,可以先把它预处理一下.运算一般都要满足可减性. 比较naive就不展开了. 题目 [Todo]洛谷P2513 [HAOI2009]逆序对数列 [D ...

  9. 决策单调性&wqs二分

    其实是一个还算 trivial 的知识点吧--早在 2019 年我就接触过了,然鹅当时由于没认真学并没有把自己学懂,故今复学之( 1. 决策单调性 引入:在求解 DP 问题的过程中我们常常遇到这样的问 ...

随机推荐

  1. POJ 1270 Following Orders(拓扑排序)

    题意: 给两行字符串,第一行为一组变量,第二行时一组约束(每个约束包含两个变量,x y 表示 x <y).输出满足约束的所有字符串序列. 思路:拓扑排序 + 深度优先搜索(DFS算法) 课本代码 ...

  2. Java集合类--->入门下篇

    HashSet集合 在上篇大概了解了什么是集合类,知道它可以存储任意类型的对象,并且比数组灵活,集合类的长度可以变化.这里将接着介绍一下,Set接口的实现类之一,HashSet集合,Set集合:元素不 ...

  3. python的random模块及加权随机算法的python实现

    random是用于生成随机数的,我们可以利用它随机生成数字或者选择字符串. random.seed(x)改变随机数生成器的种子seed. 一般不必特别去设定seed,Python会自动选择seed. ...

  4. poj2661 Factstone Benchmark(大数不等式同取对数)

    这道题列出不等式后明显是会溢出的大数,但是没有必要写高精度,直接两边取对数(这是很简明实用的处理技巧)得: log2(n!)=log2(n)+log2(n-1)+...+log2(1)<=log ...

  5. C语言小程序(六)、数组操作

    对数组进行操作,查找.插入.删除. #include <stdio.h> #include <stdlib.h> #include <time.h> int siz ...

  6. bzoj 3172: [Tjoi2013]单词 fail树

    题目大意: 一篇论文是由许多单词组成,现在想知道每个单词分别在论文中出现多少次. 题解: 我们首先考虑fail指针的含义 如果fail[x] = y,那么我们就知道y作为x的后缀在x中出现了一次 所以 ...

  7. 浅谈vue路由原理

    Vue的路由实现:hash模式 和 history模式 hash模式:在浏览器中符号“#”,#以及#后面的字符称之为hash,用window.location.hash读取: 特点:hash虽然在UR ...

  8. JSONP -- 跨域数据交互协议

    一.概念 ①传统Ajax:交互的数据格式——自定义字符串或XML描述: 跨域——通过服务器端代理解决. ②如今最优方案:使用JSON格式来传输数据,使用JSONP来跨域. ③JSON:一种数据交换格式 ...

  9. cs2008中头文件交叉编译的问题

    使用全局变量 使用基类指针定义在头文件中,在实际使用中强制转型为需要的指针,当然应该也可以存为空指针.

  10. WPF如何更改系统控件的默认高亮颜色 (Highlight brush)

    我们在用WPF时, 经常会对系统控件的默认高亮等等颜色进行更改. 以前通常是用controlTemplate来实现. 今天发现一个更合理或者简单的方法: 用系统默认颜色的key, 比如 SystemC ...