CF868F Yet Another Minimization Problem(决策单调性)
题目描述:给定一个序列,要把它分成k个子序列。每个子序列的费用是其中相同元素的对数。求所有子序列的费用之和的最小值。
输入格式:第一行输入n(序列长度)和k(需分子序列段数)。下一行有n个数,序列的每一个元素。
输出格式:输出一个数,费用和的最小值。
2<=n<=10^5,2<=k<=min(n,20),序列的每一个元素值大于等于1,小于等于n。
决策单调性到底是个什么神仙……
这题用分治做决策单调性……
问题是我连题解都看不懂……
米娜桑自己看题解吧,如果有会了的麻烦教我一下……->这里
//minamoto
#include<iostream>
#include<cstdio>
#include<cstring>
#define ll long long
using namespace std;
#define getc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
char buf[<<],*p1=buf,*p2=buf;
inline int read(){
#define num ch-'0'
char ch;bool flag=;int res;
while(!isdigit(ch=getc()))
(ch=='-')&&(flag=true);
for(res=num;isdigit(ch=getc());res=res*+num);
(flag)&&(res=-res);
#undef num
return res;
}
const int N=1e5+;
int a[N],c[N],n,k;
ll ff[N],gg[N],*f=ff,*g=gg;
void solve(int l,int r,int kl,int kr,ll w){
if(l>r) return;
int m=l+r>>,k=,p=m<kr?m:kr;
for(int i=l;i<=m;++i) w+=c[a[i]]++;
for(int i=kl;i<=p;++i) w-=--c[a[i]],g[m]>f[i]+w?g[m]=f[i]+w,k=i:;
for(int i=kl;i<=p;++i) w+=c[a[i]]++;
for(int i=l;i<=m;++i) w-=--c[a[i]];
solve(l,m-,kl,k,w);
for(int i=l;i<=m;++i) w+=c[a[i]]++;
for(int i=kl;i<k;++i) w-=--c[a[i]];
solve(m+,r,k,kr,w);
for(int i=kl;i<k;++i) ++c[a[i]];
for(int i=l;i<=m;++i) --c[a[i]];
}
int main(){
//freopen("testdata.in","r",stdin);
n=read(),k=read();
ll *tmp;
for(int i=;i<=n;++i) f[i]=f[i-]+c[a[i]=read()]++;
memset(c,,sizeof(c));
while(--k){
memset(g,,(n+)<<);
solve(,n,,n,);
tmp=f,f=g,g=tmp;
}
printf("%lld\n",f[n]);
return ;
}
CF868F Yet Another Minimization Problem(决策单调性)的更多相关文章
- cf868F. Yet Another Minimization Problem(决策单调性 分治dp)
题意 题目链接 给定一个长度为\(n\)的序列.你需要将它分为\(m\)段,每一段的代价为这一段内相同的数的对数,最小化代价总和. \(n<=10^5,m<=20\) Sol 看完题解之后 ...
- Codeforces 868F Yet Another Minimization Problem 决策单调性 (看题解)
Yet Another Minimization Problem dp方程我们很容易能得出, f[ i ] = min(g[ j ] + w( j + 1, i )). 然后感觉就根本不能优化. 然后 ...
- CodeForces 868F Yet Another Minimization Problem(决策单调性优化 + 分治)
题意 给定一个序列 \(\{a_1, a_2, \cdots, a_n\}\),要把它分成恰好 \(k\) 个连续子序列. 每个连续子序列的费用是其中相同元素的对数,求所有划分中的费用之和的最小值. ...
- CF868 F. Yet Another Minimization Problem 决策单调优化 分治
目录 题目链接 题解 代码 题目链接 CF868F. Yet Another Minimization Problem 题解 \(f_{i,j}=\min\limits_{k=1}^{i}\{f_{k ...
- CF868F Yet Another Minimization Problem 分治决策单调性优化DP
题意: 给定一个序列,你要将其分为k段,总的代价为每段的权值之和,求最小代价. 定义一段序列的权值为$\sum_{i = 1}^{n}{\binom{cnt_{i}}{2}}$,其中$cnt_{i}$ ...
- 洛谷CF868F Yet Another Minimization Problem(动态规划,决策单调性,分治)
洛谷题目传送门 貌似做所有的DP题都要先搞出暴力式子,再往正解上靠... 设\(f_{i,j}\)为前\(i\)个数分\(j\)段的最小花费,\(w_{l,r}\)为\([l,r]\)全在一段的费用. ...
- CF868F Yet Another Minimization Problem
题目描述: 给定一个序列,要把它分成k个子序列.每个子序列的费用是其中相同元素的对数.求所有子序列的费用之和的最小值. 输入格式:第一行输入n(序列长度)和k(需分子序列段数).下一行有n个数,序列的 ...
- DP的各种优化(动态规划,决策单调性,斜率优化,带权二分,单调栈,单调队列)
前缀和优化 当DP过程中需要反复从一个求和式转移的话,可以先把它预处理一下.运算一般都要满足可减性. 比较naive就不展开了. 题目 [Todo]洛谷P2513 [HAOI2009]逆序对数列 [D ...
- 决策单调性&wqs二分
其实是一个还算 trivial 的知识点吧--早在 2019 年我就接触过了,然鹅当时由于没认真学并没有把自己学懂,故今复学之( 1. 决策单调性 引入:在求解 DP 问题的过程中我们常常遇到这样的问 ...
随机推荐
- PHP之冒泡排序的优化
冒泡排序是一个常见的排序算法,它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来.走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成. 对于冒泡排序 ...
- codeforces 632C C. The Smallest String Concatenation(sort)
C. The Smallest String Concatenation time limit per test 3 seconds memory limit per test 256 megabyt ...
- 【leetcode刷题笔记】Recover Binary Search Tree
Two elements of a binary search tree (BST) are swapped by mistake. Recover the tree without changing ...
- 【leetcode刷题笔记】Search in Rotated Sorted Array
Suppose a sorted array is rotated at some pivot unknown to you beforehand. (i.e., 0 1 2 4 5 6 7 migh ...
- mongodb与mysql的命令对比
mongodb与mysql命令对比 传统的关系数据库一般由数据库(database).表(table).记录(record)三个层次概念组成,MongoDB是由数据库(database).集合(col ...
- hdu 3537 Daizhenyang's Coin(博弈-翻硬币游戏)
题意:每次可以翻动一个.二个或三个硬币.(Mock Turtles游戏) 初始编号从0开始. 当N==1时,硬币为:正,先手必胜,所以sg[0]=1. 当N==2时,硬币为:反正,先手必赢,先手操作后 ...
- ffmpeg编码h264只包含I帧P帧的方法
ffmpeg使用avcodc_encode_video编码,默认产生的h264包含B帧,在安防行业很多地方是不需要用到B帧的. 1.基础知识充电 这就涉及到h264的各种profile格式了,参考 h ...
- H.264 RTPpayload 格式------ H.264 视频 RTP 负载格式(包含AAC部分解析)
H.264 RTPpayload 格式------ H.264 视频 RTP 负载格式 1. 网络抽象层单元类型 (NALU) NALU 头由一个字节组成, 它的语法如下: +------------ ...
- Excel对重复数据分组,求出不同的数据(office 2013)
第一步: 第二步: 第三步:
- 机器学习:从sklearn中加载数据
一.sklearn模块 sklearn模块下有很多子模块,常用的数据集在:sklearn.datasets模块下: 通过数据集中DESCR来查看数据集的文档: 从datasets中加载数据: impo ...