拼装小火车 的原文 IplImage, CvMat, Mat 的关系

opencv中常见的 与图像操作有关的数据容器有Mat,cvMat和IplImage,这三种类型都可以代表和显示图像,但是,Mat类型侧重于计算,数学性较 高,openCV对Mat类型的计算也进行了优化。而CvMat和IplImage类型更侧重于“图像”,opencv对其中的图像操作(缩放、单通道提 取、图像阈值操作等)进行了优化。在opencv2.0之前,opencv是完全用C实现的,但是,IplImage类型与CvMat类型的关系类似于面 向对象中的继承关系。实际上,CvMat之上还有一个更抽象的基类----CvArr,这在源代码中会常见。

1. IplImage

opencv中的图像信息头,该结构体定义:

typedef struct _IplImage
{
int nSize; /* IplImage大小 */
int ID; /* 版本 (=0)*/
int nChannels; /* 大多数OPENCV函数支持1,2,3 或 4 个通道 */
int alphaChannel; /* 被OpenCV忽略 */
int depth; /* 像素的位深度: IPL_DEPTH_8U, IPL_DEPTH_8S, IPL_DEPTH_16U,
IPL_DEPTH_16S, IPL_DEPTH_32S, IPL_DEPTH_32F and IPL_DEPTH_64F 可支持 */ char colorModel[]; /* 被OpenCV忽略 */
char channelSeq[]; /* 被OpenCV忽略 */
int dataOrder; /* 0 - 交叉存取颜色通道, 1 - 分开的颜色通道. cvCreateImage只能创建交叉存取图像 */
int origin; /* 0 - 顶—左结构,1 - 底—左结构 (Windows bitmaps 风格) */
int align; /* 图像行排列 (4 or 8). OpenCV 忽略它,使用 widthStep 代替 */ int width; /* 图像宽像素数 */
int height; /* 图像高像素数*/ struct _IplROI *roi; /* 图像感兴趣区域. 当该值非空只对该区域进行处理 */
struct _IplImage *maskROI; /* 在 OpenCV中必须置NULL */
void *imageId; /* 同上*/
struct _IplTileInfo *tileInfo; /*同上*/ int imageSize; /* 图像数据大小(在交叉存取格式下imageSize=image->height*image->widthStep),单位字节*/
char *imageData; /* 指向排列的图像数据 */
int widthStep; /* 排列的图像行大小,以字节为单位 */
int BorderMode[]; /* 边际结束模式, 被OpenCV忽略 */
int BorderConst[]; /* 同上 */ char *imageDataOrigin; /* 指针指向一个不同的图像数据结构(不是必须排列的),是为了纠正图像内存分配准备的 */
} IplImage;

dataOrder中的两个取值:交叉存取颜色通道是颜色数据排列将会是BGRBGR...的交错排列。分开的颜色通道是有几个颜色通道就分几个颜色平面存储。roi是IplROI结构体,该结构体包含了xOffset,yOffset,height,width,coi成员变量,其中xOffset,yOffset是x,y坐标,coi代表channel of interest(感兴趣的通道),非0的时候才有效。访问图像中的数据元素,分间接存储和直接存储,当图像元素为浮点型时,(uchar *) 改为 (float *):

/*间接存取*/
IplImage* img=cvLoadImage("lena.jpg", );
CvScalar s; /*sizeof(s) == img->nChannels*/
s=cvGet2D(img,i,j); /*get the (i,j) pixel value*/
cvSet2D(img,i,j,s); /*set the (i,j) pixel value*/ /*宏操作*/
IplImage* img; //malloc memory by cvLoadImage or cvCreateImage
for(int row = ; row < img->height; row++)
{
for (int col = ; col < img->width; col++)
{
b = CV_IMAGE_ELEM(img, UCHAR, row, col * img->nChannels + );
g = CV_IMAGE_ELEM(img, UCHAR, row, col * img->nChannels + );
r = CV_IMAGE_ELEM(img, UCHAR, row, col * img->nChannels + );
}
} /*直接存取*/
IplImage* img; //malloc memory by cvLoadImage or cvCreateImage
uchar b, g, r; // 3 channels
for(int row = ; row < img->height; row++)
{
for (int col = ; col < img->width; col++)
{
b = ((uchar *)(img->imageData + row * img->widthStep))[col * img->nChannels + ];
g = ((uchar *)(img->imageData + row * img->widthStep))[col * img->nChannels + ];
r = ((uchar *)(img->imageData + row * img->widthStep))[col * img->nChannels + ];
}
}

始化使用IplImage *,是一个指向结构体IplImage的指针:

IplImage * cvLoadImage(const char * filename, int iscolor CV_DEFAULT(CV_LOAD_IMAGE_COLOR)); //load images from specified image
IplImage * cvCreateImage(CvSize size, int depth, int channels); //allocate memory

2.CvMat

首先,我们需要知道,第一,在OpenCV中没有向量(vector)结构。任何时候需要向量,都只需要一个列矩阵(如果需要一个转置或者共轭向量,则需要一个行矩阵)。第二,OpenCV矩阵的概念与我们在线性代数课上学习的概念相比,更抽象,尤其是矩阵的元素,并非只能取简单的数值类型,可以是多通道的值。CvMat 的结构:

typedef struct CvMat
{
int type;
int step; /*用字节表示行数据长度*/
int* refcount; /*内部访问*/
union {
uchar* ptr;
short* s;
int* i;
float* fl;
double* db;
} data; /*数据指针*/
union {
int rows;
int height;
};
union {
int cols;
int width;
};
} CvMat; /*矩阵结构头*/
创建CvMat数据:
CvMat * cvCreateMat(int rows, int cols, int type); /*创建矩阵头并分配内存*/
CV_INLine CvMat cvMat((int rows, int cols, int type, void* data CV_DEFAULT); /*用已有数据data初始化矩阵*/
CvMat * cvInitMatHeader(CvMat * mat, int rows, int cols, int type, void * data CV_DEFAULT(NULL), int step CV_DEFAULT(CV_AUTOSTEP)); /*(用已有数据data创建矩阵头)*/
对矩阵数据进行访问: 
/*间接访问*/
/*访问CV_32F1和CV_64FC1*/
cvmSet( CvMat* mat, int row, int col, double value);
cvmGet( const CvMat* mat, int row, int col ); /*访问多通道或者其他数据类型: scalar的大小为图像的通道值*/
CvScalar cvGet2D(const CvArr * arr, int idx0, int idx1); //CvArr只作为函数的形参void cvSet2D(CvArr* arr, int idx0, int idx1, CvScalar value); /*直接访问: 取决于数组的数据类型*/
/*CV_32FC1*/
CvMat * cvmat = cvCreateMat(, , CV_32FC1);
cvmat->data.fl[row * cvmat->cols + col] = (float)3.0; /*CV_64FC1*/
CvMat * cvmat = cvCreateMat(, , CV_64FC1);
cvmat->data.db[row * cvmat->cols + col] = 3.0; /*一般对于单通道*/
CvMat * cvmat = cvCreateMat(, , CV_64FC1);
CV_MAT_ELEM(*cvmat, double, row, col) = 3.0; /*double是根据数组的数据类型传入,这个宏不能处理多通道*/ /*一般对于多通道*/
if (CV_MAT_DEPTH(cvmat->type) == CV_32F)
CV_MAT_ELEM_CN(*cvmat, float, row, col * CV_MAT_CN(cvmat->type) + ch) = (float)3.0; // ch为通道值
if (CV_MAT_DEPTH(cvmat->type) == CV_64F)
CV_MAT_ELEM_CN(*cvmat, double, row, col * CV_MAT_CN(cvmat->type) + ch) = 3.0; // ch为通道值 /*多通道数组*/
/*3通道*/
for (int row = ; row < cvmat->rows; row++)
{
p = cvmat ->data.fl + row * (cvmat->step / );
for (int col = ; col < cvmat->cols; col++)
{
*p = (float) row + col;
*(p+) = (float)row + col + ;
*(p+) = (float)row + col + ;
p += ;
}
}
/*2通道*/
CvMat * vector = cvCreateMat(,, CV_32SC2);CV_MAT_ELEM(*vector, CvPoint, , ) = cvPoint(,);
/*4通道*/
CvMat * vector = cvCreateMat(,, CV_64FC4);CV_MAT_ELEM(*vector, CvScalar, , ) = CvScalar(, , , );

复制矩阵操作:

/*复制矩阵*/
CvMat* M1 = cvCreateMat(4,4,CV_32FC1);
CvMat* M2;
M2=cvCloneMat(M1);

3.Mat

Mat是opencv2.0推出的处理图像的新的数据结构,现在越来越有趋势取代之前的cvMat和lplImage,相比之下Mat最大的好处就是能够更加方便的进行内存管理,不再需要程序员手动管理内存的释放。opencv2.3中提到Mat是一个多维的密集数据数组,可以用来处理向量和矩阵、图像、直方图等等常见的多维数据。

class CV_EXPORTS Mat
{ public: /*..很多方法..*/
/*............*/ int flags;(Note :目前还不知道flags做什么用的)
int dims; /*数据的维数*/
int rows,cols; /*行和列的数量;数组超过2维时为(-1,-1)*/
uchar *data; /*指向数据*/
int * refcount; /*指针的引用计数器; 阵列指向用户分配的数据时,指针为 NULL /* 其他成员 */
... };

从以上结构体可以看出Mat也是一个矩阵头,默认不分配内存,只是指向一块内存(注意读写保护)。初始化使用create函数或者Mat构造函数,以下整理自opencv2.3.1 Manual:

Mat(nrows, ncols, type, fillValue]);
M.create(nrows, ncols, type); 例子:
Mat M(,,CV_32FC2,Scalar(,)); /*创建复数矩阵1+3j*/
M.create(, , CV_8UC()); /*创建15个通道的8bit的矩阵*/ /*创建100*100*100的8位数组*/
int sz[] = {, , };
Mat bigCube(, sz, CV_8U, Scalar:all()); /*现成数组*/
double m[][] = {{a, b, c}, {d, e, f}, {g, h, i}};
Mat M = Mat(, , CV_64F, m).inv(); /*图像数据*/
Mat img(Size(,),CV_8UC3);
Mat img(height, width, CV_8UC3, pixels, step); /*const unsigned char* pixels,int width, int height, int step*/ /*使用现成图像初始化Mat*/
IplImage* img = cvLoadImage("greatwave.jpg", );
Mat mtx(img,); // convert IplImage* -> Mat; /*不复制数据,只创建一个数据头*/

访问Mat的数据元素:

/*对某行进行访问*/
Mat M;
M.row() = M.row() + M.row() * ; /*第5行扩大三倍加到第3行*/ /*对某列进行复制操作*/
Mat M1 = M.col();
M.col().copyTo(M1); /*第7列复制给第1列*/ /*对某个元素的访问*/
Mat M;
M.at<double>(i,j); /*double*/
M.at(uchar)(i,j); /*CV_8UC1*/
Vec3i bgr1 = M.at(Vec3b)(i,j) /*CV_8UC3*/
Vec3s bgr2 = M.at(Vec3s)(i,j) /*CV_8SC3*/
Vec3w bgr3 = M.at(Vec3w)(i,j) /*CV_16UC3*/ /*遍历整个二维数组*/
double sum = 0.0f;
for(int row = ; row < M.rows; row++)
{
const double * Mi = M.ptr<double>(row);
for (int col = ; col < M.cols; col++)
sum += std::max(Mi[j], .);
} /*STL iterator*/
double sum=;
MatConstIterator<double> it = M.begin<double>(), it_end = M.end<double>();
for(; it != it_end; ++it)
sum += std::max(*it, .);

Mat可进行Matlab风格的矩阵操作,如初始化的时候可以用initializers,zeros(), ones(), eye(). 除以上内容之外,Mat还有有3个重要的方法:

Mat mat = imread(const String* filename);           // 读取图像
imshow(const string frameName, InputArray mat); // 显示图像
imwrite (const string& filename, InputArray img); //储存图像

4. CvMat, Mat, IplImage之间的互相转换

IpIImage -> CvMat
/*cvGetMat*/
CvMat matheader;
CvMat * mat = cvGetMat(img, &matheader);
/*cvConvert*/
CvMat * mat = cvCreateMat(img->height, img->width, CV_64FC3);
cvConvert(img, mat) IplImage -> Mat
Mat::Mat(const IplImage* img, bool copyData=false);/*default copyData=false,与原来的IplImage共享数据,只是创建一个矩阵头*/
例子:
IplImage* iplImg = cvLoadImage("greatwave.jpg", );
Mat mtx(iplImg); /* IplImage * -> Mat,共享数据; or : Mat mtx = iplImg;*/ Mat -> IplImage
Mat M
IplImage iplimage = M; /*只创建图像头,不复制数据*/ CvMat -> Mat
Mat::Mat(const CvMat* m, bool copyData=false); /*类似IplImage -> Mat,可选择是否复制数据*/ Mat -> CvMat
例子(假设Mat类型的imgMat图像数据存在):
CvMat cvMat = imgMat;/*Mat -> CvMat, 类似转换到IplImage,不复制数据只创建矩阵头

[转] IplImage, CvMat, Mat 的关系的更多相关文章

  1. IplImage, CvMat, Mat 的关系

    IplImage, CvMat, Mat 的关系 转载来源:http://www.cnblogs.com/summerRQ/articles/2406109.html opencv中常见的与图像操作有 ...

  2. opencv学习笔记(一)IplImage, CvMat, Mat 的关系

    opencv学习笔记(一)IplImage, CvMat, Mat 的关系 opencv中常见的与图像操作有关的数据容器有Mat,cvMat和IplImage,这三种类型都可以代表和显示图像,但是,M ...

  3. IplImage, CvMat, Mat 的关系和相互转换(转)

    (看到的一篇非常好的文章,讲opencv内部类之间的关系的.) opencv中常见的与图像操作有关的数据容器有Mat,cvMat和IplImage,这三种类型都可以代表和显示图像,但是,Mat类型侧重 ...

  4. opencv基础知识------IplImage, CvMat, Mat 的关系和相互转换

    Mat,cvMat和IplImage这三种类型都可以代表和显示图像,但是,Mat类型侧重于计算,数学性较高,openCV对Mat类型的计算也进行了优化.而CvMat和IplImage类型更侧重于“图像 ...

  5. OpenCV中IplImage/CvMat/Mat转化关系

    原文链接:http://www.cnblogs.com/summerRQ/articles/2406109.html 如对内容和版权有何疑问,请拜访原作者或者通知本人. opencv中常见的与图像操作 ...

  6. Mat, IplImage, CvMat, Cvarr关系及元素获取

    自己目前正打算整理opencv数据结构之间关系,寻寻觅觅之间,发现这篇博文很全面,总结得很好,故转之.红色部分不对,自己已修改! 原文地址:http://blog.csdn.net/abcjennif ...

  7. OpenCV——Mat,IplImage,CvMat类型转换

    Mat,cvMat和IplImage这三种类型都可以代表和显示图像,三者区别如下 Mat类型侧重于计算,数学性较高,openCV对Mat类型的计算也进行了优化. 而CvMat和IplImage类型更侧 ...

  8. opencv----(1) mat最好用,和IplImage,cvmat 比较

    学习了几天,发现mat比IplImage,cvmat 好用太多了. 不知道确切的原文出处,我是转自新浪的一篇博文:http://blog.sina.com.cn/s/blog_534497fd0101 ...

  9. Mat ,IplImage, CvMat 之间的转换的总结

    在新版本与旧版本之间纠结,到底是用Mat,还是Iplimage? Mat 侧重于数据计算,而Iplimage注重于图像的处理. 因此,应根据具体需要灵活使用,那个好用用哪个,只要在两者之间进行转换即可 ...

随机推荐

  1. Android记事本11

    昨天: Activity的启动模式. 今天: 分析了一些网上的例子的源码. 遇到问题: 无.

  2. hadoop2.5.2学习及实践笔记(一)—— 伪分布式学习环境搭建

    软件 工具:vmware 10 系统:centOS 6.5  64位 Apache Hadoop: 2.5.2  64位 Jdk:  1.7.0_75  64位 安装规划 /opt/softwares ...

  3. Codeforces Round #386 (Div. 2) 746G(树的构造)

    大体题意 一棵树有n个结点,告诉你每层深度上有a[i]个结点,以及有多少叶子结点 让你生成这棵树 题解:考虑一颗树,如果满足每层深度上有a[i]结点,最多能有多少叶子结点 那么答案很简单,就是对(a[ ...

  4. 机器学习-- Logistic回归 Logistic Regression

    转载自:http://blog.csdn.net/linuxcumt/article/details/8572746 1.假设随Tumor Size变化,预测病人的肿瘤是恶性(malignant)还是 ...

  5. git bash 如何进入某个盘的特定文件夹

    下面是用gitbash进入E:\the fifth version of ecard\epayment这个文件夹下 命令如下图所示:

  6. hibernate用配置文件的方式实现orm

    本文主要讲用配置文件的方式讲如何把一个对象和数据库中的表关联起来,其实用配置文件本质是和用注解的方式是一样的. 思路:1.写一个domain对象(如Person.java) 2.写这个domain对象 ...

  7. mysql索引记

    如果字段是数值型,where 是字符串型,走索引但是,如果字段是字符串型,但是where 是数值型,不走索引

  8. 使用srvany.exe把程序安装成windows服务

    srvany.exe介绍 srvany.exe是Microsoft Windows Resource Kits工具集的一个实用的小工具,用于将任何EXE程序作为Windows服务运行.也就是说srva ...

  9. msvc交叉编译:使用vcvarsall.bat设置命令行编译环境

    一直以来我只知道vc设置命令行编译环境的批处理命令是%VS140COMNTOOLS%/Common7/Tools下的vsvars32.bat,(%VS140COMNTOOLS%为定义vs2015公共工 ...

  10. vboxmanage查询正在运行的vbox虚拟机

    系统:linux通用,virtualbox5.0 每次用下面命令启动vm虚拟机时,发现没办法知道它的IP. $ vboxmanage startvm <vmname> --type hea ...