(上不了p站我要死了,侵权度娘背锅)

Description

我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件:

(1)它是从1到2n共2n个整数的一个排列{ai};

(2)所有的奇数项满足a1 < a3 < … < a2n-1,所有的偶数项满足a2 < a4 < … < a2n;

(3)任意相邻的两项a2i-1与a2i(1≤i≤n)满足奇数项小于偶数项,即:a2i-1 < a2i。

现在的任务是:对于给定的n,请求出有多少个不同的长度为2n的有趣的数列。因为最后的答案可能很大,所以只要求输出答案 mod P的值。

Input

输入文件只包含用空格隔开的两个整数n和P。输入数据保证,50%的数据满足n≤1000,100%的数据满足n≤1000000且P≤1000000000。

Output

仅含一个整数,表示不同的长度为2n的有趣的数列个数mod P的值。

Sample Input

3 10

Sample Output

5

对应的5个有趣的数列分别为(1,2,3,4,5,6),(1,2,3,5,4,6),(1,3,2,4,5,6),(1,3,2,5,4,6),(1,4,2,5,3,6)。

首先这是一个卡特兰数

我们思考把1~n的数字按顺序摆放。因为分了奇数和偶数,就相当于分了两组队列,我们把这n个数按顺序放入两组队列里。由于任何时候奇数队列里的元素个数都大于等于偶数队列里的,所以是卡特兰的一个经典模型。

答案即为C(2n,n)/(n+1) mod p

但是发现p并不是一个质数,所以不能求逆元,就不能直接用阶乘的公式来做。

这里就有一个很重要的方法了

虽然是模任意数,但是n的范围是o(n)可过的。我们筛出需要的数(如n)的阶乘(n!)中每个素数的指数。具体做法为:

设cnt[i]表示该阶乘(n!)中包含多少个i,进行线性递推。初始值cnt[i]=1。

依次枚举n到1,跳过质数。设minp[i]为i的最小质因子,cnt[i/minp[i]]+=cnt[i], cnt[minp[i]]+=cnt[i], cnt[i]=0。

这部分的代码(init()为线性筛):

init();
for(int i=n*2;i>=2;i--){
cnt[i]++;
if(!notp[i]) continue;
cnt[i/minp[i]]+=cnt[i];
cnt[minp[i]]+=cnt[i];
cnt[i]=0;
}

这样就将除法问题转化为了质数的相减问题,得出C(2n,n)/(n+1)中每个质数的指数,再做快速幂。

时间复杂度:根据某素数定理,n中的素数个数约为 n/ln n 个,快速幂是 log n 的。所以乘起来约为o(n)

完整代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#ifdef WIN32
#define RIN "%I64d"
#else
#define RIN "%lld"
#endif const int N=1000000+5; int cnt1[N*2],cnt2[N*2],cnt3[N*2];
int notp[N*2],cntp=0,prime[N*2],minp[N*2];
int n,p; void init(){
notp[1]=1;
for(int i=2;i<=n*2;i++){
if(!notp[i])
prime[++cntp]=i;
for(int j=1;j<=cntp&&i*prime[j]<=n*2;j++){
notp[i*prime[j]]=1;
minp[i*prime[j]]=prime[j];
if(i%prime[j]==0) break;
}
}
}
ll power(int a,int b){
ll rt=1;
for(;b;b>>=1,a=(a*a)%p)
if(b&1) rt=(rt*a)%p;
return rt;
}
int main(){
scanf("%d%d",&n,&p);
init();
for(int i=n*2;i>=2;i--){
cnt1[i]++;
if(!notp[i]) continue;
cnt1[i/minp[i]]+=cnt1[i];
cnt1[minp[i]]+=cnt1[i];
cnt1[i]=0;
}
for(int i=n;i>=2;i--){
cnt2[i]++;
if(!notp[i]) continue;
cnt2[i/minp[i]]+=cnt2[i];
cnt2[minp[i]]+=cnt2[i];
cnt2[i]=0;
}
for(int i=n+1;i>=2;i--){
cnt3[i]++;
if(!notp[i]) continue;
cnt3[i/minp[i]]+=cnt3[i];
cnt3[minp[i]]+=cnt3[i];
cnt3[i]=0;
}
ll ans=1;
for(int i=1;i<=cntp;i++){
int tmp=prime[i];//printf("%d %d %d\n",cnt1[tmp],cnt2[tmp],cnt3[tmp]);
ans=(ans*power(prime[i],cnt1[tmp]-cnt2[tmp]-cnt3[tmp]))%p;
}
printf(RIN"\n",ans);
return 0;
}

【bzoj1485:】【 [HNOI2009]有趣的数列】模任意数的卡特兰数的更多相关文章

  1. bzoj1485: [HNOI2009]有趣的数列(Catalan数)

    1485: [HNOI2009]有趣的数列 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 2105  Solved: 1117[Submit][Stat ...

  2. [bzoj1485][HNOI2009]有趣的数列_卡特兰数_组合数

    有趣的数列 bzoj-1485 HNOI-2009 题目大意:求所有1~2n的排列满足奇数项递增,偶数项递增.相邻奇数项大于偶数项的序列个数%P. 注释:$1\le n\le 10^6$,$1\le ...

  3. 【卡特兰数】BZOJ1485: [HNOI2009]有趣的数列

    Description 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所有的奇数项满足a1<a3<…&l ...

  4. BZOJ1485:[HNOI2009]有趣的数列(卡特兰数)

    Description 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所有的奇数项满足a1<a3<…&l ...

  5. BZOJ1485: [HNOI2009]有趣的数列(Catalan数,质因数分解求组合数)

    题意 挺简洁的. 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所有的奇数项满足a1<a3<…<a ...

  6. BZOJ1485: [HNOI2009]有趣的数列(卡特兰数+快速幂)

    题目链接 传送门 题面 思路 打表可以发现前六项分别为1,2,5,12,42,132,加上\(n=0\)时的1构成了卡特兰数的前几项. 看别人的题解说把每一个数扫一遍,奇数项当成入栈,偶数项当成出栈, ...

  7. bzoj1485: [HNOI2009]有趣的数列(Catalan数)

    一眼卡特兰数...写完才发现不对劲,样例怎么输出$0$...原来模数不一定是质数= =... 第一次见到模数不是质数的求组合数方法$(n,m\leq 10^7)$,记录一下... 先对于$1$~$n$ ...

  8. BZOJ1485: [HNOI2009]有趣的数列

    Description 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所有的奇数项满足a1<a3<…&l ...

  9. [HNOI2009]有趣的数列 题解(卡特兰数)

    [HNOI2009]有趣的数列 Description 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所有的奇数项满 ...

  10. 洛谷P3200 [HNOI2009]有趣的数列(Catalan数)

    P3200 [HNOI2009]有趣的数列 题目描述 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所有的奇数项满足 ...

随机推荐

  1. springboot整合jersey

    https://blog.csdn.net/xiongpei00/article/details/76576420

  2. glance上传镜像

    glance image-create --name "centos68-test" --file centos68.dsk \ --disk-format raw --conta ...

  3. 调整CodeIgniter错误报告级别

    修改位置:CI根目录 index.php 为开发环境与生产环境定义错误报告级别 if (defined('ENVIRONMENT')) { switch (ENVIRONMENT) { case 'd ...

  4. bitbucket相关操作

    常见命令: git checkout -b develop master 创建Develop分支的命令 git checkout master 切换到Master分支 git merge --no-f ...

  5. BZOJ 2186 沙拉公主的困惑

    2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec  Memory Limit: 259 MB Submit: 3397  Solved: 1164 [Submit] ...

  6. 【python基础】--常用数据结构

    list tuple dict set四种常用数据结构 list list 有序的集合,可以随时添加.删除其中元素值; 支持list嵌套模式, >>> p = ['a','b']&g ...

  7. GDI+实现双缓冲绘图方法一

    private void Form5_MouseMove(object sender, MouseEventArgs e) { int intOX = rectDrawArea.X; int intO ...

  8. 201621123034 《Java程序设计》第8周学习总结

    作业08-集合 1. 本周学习总结 以你喜欢的方式(思维导图或其他)归纳总结集合相关内容. 2. 书面作业 1. ArrayList代码分析 1.1 解释ArrayList的contains源代码 答 ...

  9. 想了一天的题目QAQ 毛线数列的最值

    #include <cstdio> #include <cstring> #include <cmath> #include <iostream> #i ...

  10. SQL小助手——SQL Prompt

    背景: 当数据库设计的比较复杂.庞大时,我们如果对脚本不是很熟悉,就会很难完成看似简单的增.删.改.查的操作.我们需要一款软件来给出相应的提示或帮助,来提高代码的可读性,更快更好的完成任务. 简介: ...