在第一篇博客里提过图片识别的底层.最精准的图片识别需要海量的数据磨炼.自己写的底层没有以亿为单位的数据支持其实也是个残废品.

此篇不是为了教学.而且在需要的时候抄下来就能用

在此介绍Microsoft.Baidu.Ali的几个人工智能接口吧.

没啥技术含量.都是HTTP.POST请求一类的.

个人可以申请30天免费试用.

以下是微软的人工智能接口(还尝试了百度.阿里的人工智能.微软识别的是最精准的)

public class FaceHelper
{
private const string uriBase = "https://westcentralus.api.cognitive.microsoft.com/face/v1.0/detect";
private static string subscriptionKey = string.Empty;
public FaceHelper(string Key,string imageFilePath)
{
if (!String.IsNullOrWhiteSpace(Key))
{
subscriptionKey = Key;
MakeAnalysisRequest(imageFilePath);
}
} static async void MakeAnalysisRequest(string imageFilePath)
{
HttpClient client = new HttpClient(); client.DefaultRequestHeaders.Add("Ocp-Apim-Subscription-Key", subscriptionKey); string requestParameters = "returnFaceId=true&returnFaceLandmarks=false&returnFaceAttributes=age,gender,headPose,smile,facialHair,glasses,emotion,hair,makeup,occlusion,accessories,blur,exposure,noise"; string uri = uriBase + "?" + requestParameters; HttpResponseMessage response; byte[] byteData = GetImageAsByteArray(imageFilePath); using (ByteArrayContent content = new ByteArrayContent(byteData))
{
content.Headers.ContentType = new MediaTypeHeaderValue("application/octet-stream"); response = await client.PostAsync(uri, content); string contentString = await response.Content.ReadAsStringAsync(); Console.WriteLine("\nResponse:\n");
Console.WriteLine(JsonPrettyPrint(contentString));
}
} static byte[] GetImageAsByteArray(string imageFilePath)
{
FileStream fileStream = new FileStream(imageFilePath, FileMode.Open, FileAccess.Read);
BinaryReader binaryReader = new BinaryReader(fileStream);
return binaryReader.ReadBytes((int)fileStream.Length);
} static string JsonPrettyPrint(string json)
{
if (string.IsNullOrEmpty(json))
return string.Empty; json = json.Replace(Environment.NewLine, "").Replace("\t", ""); StringBuilder sb = new StringBuilder();
bool quote = false;
bool ignore = false;
int offset = ;
int indentLength = ; foreach (char ch in json)
{
switch (ch)
{
case '"':
if (!ignore) quote = !quote;
break;
case '\'':
if (quote) ignore = !ignore;
break;
} if (quote)
sb.Append(ch);
else
{
switch (ch)
{
case '{':
case '[':
sb.Append(ch);
sb.Append(Environment.NewLine);
sb.Append(new string(' ', ++offset * indentLength));
break;
case '}':
case ']':
sb.Append(Environment.NewLine);
sb.Append(new string(' ', --offset * indentLength));
sb.Append(ch);
break;
case ',':
sb.Append(ch);
sb.Append(Environment.NewLine);
sb.Append(new string(' ', offset * indentLength));
break;
case ':':
sb.Append(ch);
sb.Append(' ');
break;
default:
if (ch != ' ') sb.Append(ch);
break;
}
}
} return sb.ToString().Trim();
} }

脸识别 API.检测、识别、分析、组织和标记照片中的人脸

FaceHelper face = new FaceHelper("你的密钥",ConfigurationManager.AppSettings["Face"] );

返回值很多很详细.人脸在图片的那个区域。性别.有没有头发。有没有胡子。有没有眼镜都写的很清楚.在此不一一列举

以下是声音识别.分REST 和SOCKET 语音识别也分中英美法.传递的音频也要分长短.以下配置为英文识别.REST.15秒以下音频

public class VoiceHelper
{
/// <summary>
/// 识别模式
///有认可的三种模式:interactive,conversation,和dictation。识别模式根据用户如何说话来调整语音识别。为您的应用程序选择适当的识别模式。
/// </summary>
public VoiceHelper(string file,string key)
{
string url = "https://speech.platform.bing.com/speech/recognition/dictation/cognitiveservices/v1?language=en-US&format=simple"; string responseString = string.Empty;
HttpWebRequest request = null;
request = (HttpWebRequest)HttpWebRequest.Create(url);
request.SendChunked = true;
request.Accept = @"application/json;text/xml";
request.Method = "POST";
request.ProtocolVersion = HttpVersion.Version11;
request.ContentType = @"audio/wav; codec=audio/pcm; samplerate=16000";
request.Headers["Ocp-Apim-Subscription-Key"] = key; using (FileStream fs = new FileStream(file, FileMode.Open, FileAccess.Read))
{ byte[] buffer = null;
int bytesRead = 0;
using (Stream requestStream = request.GetRequestStream())
{ buffer = new Byte[checked((uint)Math.Min(1024, (int)fs.Length))];
while ((bytesRead = fs.Read(buffer, 0, buffer.Length)) != 0)
{
requestStream.Write(buffer, 0, bytesRead);
} requestStream.Flush();
}
} using (WebResponse response = request.GetResponse())
{
Console.WriteLine(((HttpWebResponse)response).StatusCode); using (StreamReader sr = new StreamReader(response.GetResponseStream()))
{
responseString = sr.ReadToEnd();
} Console.WriteLine(responseString);
} }
}

  

VoiceHelper voice = new VoiceHelper(@ConfigurationManager.AppSettings["Voice"], "你的密钥");

这个语音识别还是可以的.Displaytext就是我在音频中说的话.重复了三遍 TEST.声音很沙哑也很低沉.识别率很赞.

不过要注意只支持15秒带有PCM单声道(单声道),16 KHz的WAV文件

以下是图片识别.这个就可好玩了.我放了一个大飞机.返回的数据中.飞机蓝天都识别了

public class OCRHelper
{
const string subscriptionKey = "你的密钥"; const string uriBase = "https://westcentralus.api.cognitive.microsoft.com/vision/v1.0/analyze"; public OCRHelper(string file)
{
// Get the path and filename to process from the user.
Console.WriteLine("Analyze an image:");
Console.Write("Enter the path to an image you wish to analzye: ");
// Execute the REST API call.
MakeAnalysisRequest(file); Console.WriteLine("\nPlease wait a moment for the results to appear. Then, press Enter to exit...\n"); }
/// <summary>
/// Gets the analysis of the specified image file by using the Computer Vision REST API.
/// </summary>
/// <param name="imageFilePath">The image file.</param>
static async void MakeAnalysisRequest(string imageFilePath)
{
HttpClient client = new HttpClient(); // Request headers.
client.DefaultRequestHeaders.Add("Ocp-Apim-Subscription-Key", subscriptionKey); // Request parameters. A third optional parameter is "details".
string requestParameters = "visualFeatures=Categories,Description,Color&language=en"; // Assemble the URI for the REST API Call.
string uri = uriBase + "?" + requestParameters; HttpResponseMessage response; // Request body. Posts a locally stored JPEG image.
byte[] byteData = GetImageAsByteArray(imageFilePath); using (ByteArrayContent content = new ByteArrayContent(byteData))
{
// This example uses content type "application/octet-stream".
// The other content types you can use are "application/json" and "multipart/form-data".
content.Headers.ContentType = new MediaTypeHeaderValue("application/octet-stream"); // Execute the REST API call.
response = await client.PostAsync(uri, content); // Get the JSON response.
string contentString = await response.Content.ReadAsStringAsync(); // Display the JSON response.
Console.WriteLine("\nResponse:\n");
Console.WriteLine(JsonPrettyPrint(contentString));
//description.captions.text 对图片的英文描述
}
} /// <summary>
/// Returns the contents of the specified file as a byte array.
/// </summary>
/// <param name="imageFilePath">The image file to read.</param>
/// <returns>The byte array of the image data.</returns>
static byte[] GetImageAsByteArray(string imageFilePath)
{
FileStream fileStream = new FileStream(imageFilePath, FileMode.Open, FileAccess.Read);
BinaryReader binaryReader = new BinaryReader(fileStream);
return binaryReader.ReadBytes((int)fileStream.Length);
} /// <summary>
/// Formats the given JSON string by adding line breaks and indents.
/// </summary>
/// <param name="json">The raw JSON string to format.</param>
/// <returns>The formatted JSON string.</returns>
static string JsonPrettyPrint(string json)
{
if (string.IsNullOrEmpty(json))
return string.Empty; json = json.Replace(Environment.NewLine, "").Replace("\t", ""); StringBuilder sb = new StringBuilder();
bool quote = false;
bool ignore = false;
int offset = ;
int indentLength = ; foreach (char ch in json)
{
switch (ch)
{
case '"':
if (!ignore) quote = !quote;
break;
case '\'':
if (quote) ignore = !ignore;
break;
} if (quote)
sb.Append(ch);
else
{
switch (ch)
{
case '{':
case '[':
sb.Append(ch);
sb.Append(Environment.NewLine);
sb.Append(new string(' ', ++offset * indentLength));
break;
case '}':
case ']':
sb.Append(Environment.NewLine);
sb.Append(new string(' ', --offset * indentLength));
sb.Append(ch);
break;
case ',':
sb.Append(ch);
sb.Append(Environment.NewLine);
sb.Append(new string(' ', offset * indentLength));
break;
case ':':
sb.Append(ch);
sb.Append(' ');
break;
default:
if (ch != ' ') sb.Append(ch);
break;
}
}
} return sb.ToString().Trim();
}
}

OCRHelper ocr = new OCRHelper(@"C:\Users\Administrator\Desktop\test2.png");

下图是输入参数

下面是输出参数

 以下是阿里的人工智能接口

   /// <summary>
/// 人脸属性
/// </summary>
/// <param name="file"></param>
private static void Face(string file)
{
String host = "http://rlsxsb.market.alicloudapi.com";
String path = "/face/attribute";
String method = "POST";
String appcode = "b009c20b62664344a794fe0a4535b2ab"; String querys = "";
string base64 = ImageHelper.ImgToBase64String(file);
//String bodys = "{\"type\":0,#0:通过url识别,参数image_url不为空;1:通过图片content识别,参数content不为空\"image_url\":\"http://a.com/a.jgp\",#输入图像URL\"content\":\"\"#图像内容,base64编码}";
String bodys = "{\"type\":1,\"image_url\":\" \",\"content\":\"" + base64 + " \"}";
String url = host + path;
HttpWebRequest httpRequest = null;
HttpWebResponse httpResponse = null; if ( < querys.Length)
{
url = url + "?" + querys;
} if (host.Contains("https://"))
{
ServicePointManager.ServerCertificateValidationCallback = new RemoteCertificateValidationCallback(CheckValidationResult);
httpRequest = (HttpWebRequest)WebRequest.CreateDefault(new Uri(url));
}
else
{
httpRequest = (HttpWebRequest)WebRequest.Create(url);
}
httpRequest.Method = method;
httpRequest.Headers.Add("Authorization", "APPCODE " + appcode);
//根据API的要求,定义相对应的Content-Type
httpRequest.ContentType = "application/json; charset=UTF-8";
if ( < bodys.Length)
{
byte[] data = Encoding.UTF8.GetBytes(bodys);
using (Stream stream = httpRequest.GetRequestStream())
{
stream.Write(data, , data.Length);
}
}
try
{
httpResponse = (HttpWebResponse)httpRequest.GetResponse();
}
catch (WebException ex)
{
httpResponse = (HttpWebResponse)ex.Response;
} Console.WriteLine(httpResponse.StatusCode);
Console.WriteLine(httpResponse.Method);
Console.WriteLine(httpResponse.Headers);
Stream st = httpResponse.GetResponseStream();
StreamReader reader = new StreamReader(st, Encoding.GetEncoding("utf-8"));
string result = reader.ReadToEnd();
Console.WriteLine(result);
Console.WriteLine("\n");
}

在放一个图片转Base64帮助

using System;
using System.Drawing;
using System.Drawing.Drawing2D;
using System.Drawing.Imaging;
using System.IO; namespace Microsofot.Core
{
/// <summary>
/// 图片帮助
/// </summary>
public static class ImageHelper
{
/// <summary>
/// 图片转base64
/// </summary>
/// <param name="filename"></param>
public static string ImgToBase64String(string filename)
{
if (!File.Exists(@"" + filename) || String.IsNullOrWhiteSpace(filename))
{
return null;
}
Bitmap bmp = new Bitmap(filename); MemoryStream ms = new MemoryStream();
bmp.Save(ms, ImageFormat.Jpeg);
byte[] arr = new byte[ms.Length];
ms.Position = 0;
ms.Read(arr, 0, (int)ms.Length);
ms.Close();
String strbaser64 = Convert.ToBase64String(arr);
return strbaser64;
}
/// <summary>
/// base64转图片
/// </summary>
/// <param name="base64Code"></param>
public static Bitmap Base64StringToImage(string base64Code)
{
byte[] arr = Convert.FromBase64String(base64Code);
MemoryStream ms = new MemoryStream(arr);
Bitmap bmp = new Bitmap(ms);
ms.Close();
return bmp;
}
/// <summary>
/// 生成缩略图
/// </summary>
/// <param name="img">原始图片</param>
/// <param name="thumbImagePath">缩略图地址</param>
/// <param name="width">图片宽度</param>
/// <param name="height">图片高度</param>
/// <param name="p"></param>
public static void GenerateThumbImage(System.Drawing.Image img, string thumbImagePath, int width, int height)
{
System.Drawing.Image serverImage = img;
//画板大小
int towidth = width;
int toheight = height;
//缩略图矩形框的像素点
int ow = serverImage.Width;
int oh = serverImage.Height; if (ow > oh)
{
toheight = serverImage.Height * width / serverImage.Width;
}
else
{
towidth = serverImage.Width * height / serverImage.Height;
}
//新建一个bmp图片
System.Drawing.Image bm = new Bitmap(width, height);
//新建一个画板
Graphics g = Graphics.FromImage(bm);
//设置高质量插值法
g.InterpolationMode = InterpolationMode.High;
//设置高质量,低速度呈现平滑程度
g.SmoothingMode = SmoothingMode.HighQuality;
//清空画布并以透明背景色填充
g.Clear(Color.White);
//在指定位置并且按指定大小绘制原图片的指定部分
g.DrawImage(serverImage, new Rectangle((width - towidth) / 2, (height - toheight) / 2, towidth, toheight),
0, 0, ow, oh,
GraphicsUnit.Pixel); //以jpg格式保存缩略图
bm.Save(thumbImagePath, ImageFormat.Jpeg);
serverImage.Dispose();
bm.Dispose();
g.Dispose();
}
}
}

  

 在此就不放阿里的语音识别接口了.

因为

(至2018/1/10免费版本仅支持小量的调用,首先请手动将音频文件放到阿里服务器上,然后将生成的URL拉下来作为发起识别的参数.并不能支持并发)

https://help.aliyun.com/document_detail/32378.html?spm=5176.product30413.3.4.IegjQU

   以下是百度的人工智能接口

在使用百度的接口时.需要先获取Token

    /// <summary>
/// 获取百度人工智能token
/// </summary>
public static class AccessToken {
// 调用getAccessToken()获取的 access_token建议根据expires_in 时间 设置缓存
// 返回token示例
//public static String TOKEN = "24.adda70c11b9786206253ddb70affdc46.2592000.1493524354.282335-1234567"; // 百度云中开通对应服务应用的 API Key 建议开通应用的时候多选服务
private static String clientId = "bQWhFMDTvIZpHXr8ZYwT0r9d";
// 百度云中开通对应服务应用的 Secret Key
private static String clientSecret = "EQGW33PLeYnWozRzafAcpiMBdxH8fLs2"; public static String getAccessToken()
{
String authHost = "https://aip.baidubce.com/oauth/2.0/token";
HttpClient client = new HttpClient();
List<KeyValuePair<String, String>> paraList = new List<KeyValuePair<string, string>>();
paraList.Add(new KeyValuePair<string, string>("grant_type", "client_credentials"));
paraList.Add(new KeyValuePair<string, string>("client_id", clientId));
paraList.Add(new KeyValuePair<string, string>("client_secret", clientSecret)); HttpResponseMessage response = client.PostAsync(authHost, new FormUrlEncodedContent(paraList)).Result;
String result = response.Content.ReadAsStringAsync().Result;
Console.WriteLine(result);
return result;
}
}

  然后调用人脸识别

 /// <summary>
/// 人脸识别
/// </summary>
public class FaceDetect
{
// 人脸探测
public static string detect(string imageFile,string token)
{
//string token = "[调用鉴权接口获取的token]";
string host = "https://aip.baidubce.com/rest/2.0/face/v1/detect?access_token=" + token;
Encoding encoding = Encoding.Default;
HttpWebRequest request = (HttpWebRequest)WebRequest.Create(host);
request.Method = "post";
request.KeepAlive = true;
// 图片的base64编码
string base64 = ImageHelper.ImgToBase64String(imageFile);
String str = "max_face_num=" + + "&face_fields=" + "age,beauty,expression,faceshape,gender,glasses,landmark,race,qualities" + "&image=" + HttpUtility.UrlEncode(base64);
byte[] buffer = encoding.GetBytes(str);
request.ContentLength = buffer.Length;
request.GetRequestStream().Write(buffer, , buffer.Length);
HttpWebResponse response = (HttpWebResponse)request.GetResponse();
StreamReader reader = new StreamReader(response.GetResponseStream(), Encoding.Default);
string result = reader.ReadToEnd();
Console.WriteLine("人脸探测:");
Console.WriteLine(result);
return result;
}
}

百度的语音识别就很简单了.在NUGET上搜索baidu.ai安装就行了

 private readonly Asr _asrClient;
private readonly Tts _ttsClient; public SpeechDemo()
{
_asrClient = new Asr("你的KEY", "你的密钥");
_ttsClient = new Tts("你的KEY", "EQGW33PLeYnWozRzafAcpiMBdxH8fLs2");
} // 识别本地文件
public void AsrData(string file)
{ var data = File.ReadAllBytes(file);
var result = _asrClient.Recognize(data, "wav", );
Console.Write(result);
}

(至2018/01/09百度语音服务保持免费.但是在调试过程中同一段音频.时而能识别.时而不能.并且存在漏词现象.)

Microsoft.Baidu.Ali.语音识别/人脸识别的更多相关文章

  1. 百度DMLC分布式深度机器学习开源项目(简称“深盟”)上线了如xgboost(速度快效果好的Boosting模型)、CXXNET(极致的C++深度学习库)、Minerva(高效灵活的并行深度学习引擎)以及Parameter Server(一小时训练600T数据)等产品,在语音识别、OCR识别、人脸识别以及计算效率提升上发布了多个成熟产品。

    百度为何开源深度机器学习平台?   有一系列领先优势的百度却选择开源其深度机器学习平台,为何交底自己的核心技术?深思之下,却是在面对业界无奈时的远见之举.   5月20日,百度在github上开源了其 ...

  2. 基于百度AI开放平台的人脸识别及语音合成

    基于百度AI的人脸识别及语音合成课题 课题需求 (1)人脸识别 在Web界面上传人的照片,后台使用Java技术接收图片,然后对图片进行解码,调用云平台接口识别人脸特征,接收平台返回的人员年龄.性别.颜 ...

  3. 百度AI人脸识别的学习总结

    本文主要分以下几个模块进行总结分析 项目要求:运用百度AI(人脸识别)通过本地与外网之间的信息交互(MQService),从而通过刷脸实现登陆.签字.会议签到等: 1.准备工作: 内网:单击事件按钮— ...

  4. OpenCV人脸识别Eigen算法源码分析

    1 理论基础 学习Eigen人脸识别算法需要了解一下它用到的几个理论基础,现总结如下: 1.1 协方差矩阵 首先需要了解一下公式: 共公式可以看出:均值描述的是样本集合的平均值,而标准差描述的则是样本 ...

  5. AI(二):人脸识别

    微软提供的人脸识别服务可检测图片中一个或者多个人脸,并为人脸标记出边框,同时还可获得基于机器学习技术做出的面部特征预测.可支持的人脸功能有:年龄.性别.头部姿态.微笑检测.胡须检测以及27个面部重要特 ...

  6. 3D人脸识别预处理,3D face recognition preprocess

    本文由兔崩溃公布http://blog.csdn.net/smartempire/article/details/31373817. 转载请注明出处.howdeshui#163.com 近期在做三维人 ...

  7. 百度人脸识别api及face++人脸识别api测试(python)

    一.百度人脸识别服务 1.官方网址:http://apistore.baidu.com/apiworks/servicedetail/464.html 2.提供的接口包括: 2.1 多人脸比对:请求多 ...

  8. 日常API之C#百度人脸识别

    最近看到一只我家徒儿发来的链接,原来是一堆百度AI的SDK,于是一时兴起就做了一只人脸识别,喵喵喵(●'◡'●) 一.准备工作 首先,当然是下载SDK啦:http://ai.baidu.com/sdk ...

  9. 免费人脸识别APi

    今天对应一些免费的人脸识别的api 做了一下简单的对比,觉得百度开发出来的人脸识别接口还是最符合的我的要求,简单易用,容易上手. 据说百度的一些门禁也使用上了人脸识别的功能了,功能很强大,而且能识别出 ...

随机推荐

  1. 【转】Tomcat和Weblogic的区别

    J2ee开发主要是浏览器和服务器进行交互的一种结构.逻辑都是在后台进行处理,然后再把结果传输回给浏览器.可以看出服务器在这种架构是非常重要的. 这几天接触到两种Java的web服务器,做项目用的Tom ...

  2. VirtualBox为虚拟OS硬盘扩容

    1.关闭虚拟OS. 2.进入到在VirtualBox的安装路径,执行命令例子如: VBoxManage.exe modifyhd F:\VM\Debian7.2.vdi --resize 40000 ...

  3. XXXAction-validation.xml文件中报错:Referenced file Contains errors

    我们需要引用与验证器配置相关的dtd文件,这个文件可以在xwork-core-2.3.1.2.jar下找到(xwork-validator-1.0.3.dtd) 网上有很多处理办法,如下所示: 1.直 ...

  4. Pythonb编码规范

    本编码规范是对知道创宇研发技能表中提供的PythonCodingRule.pdf文档进行凝练和总结出来的结果,感谢知道创宇的Geek精神与分享精神 此规范较为严格,严格规定了编码格式和命名规则,仅适于 ...

  5. arm开发板6410/2440上mjpg-streamer网络视频服务器移植

    摄像头移植 一.环境 主机环境 :ubuntu 10.10         目标板 :FS-S5PC100 主机工具链 :gcc-4.4.5         交叉工具链 :arm-unknown-li ...

  6. react核心知识点高度总结

    本文系统的将react的语法以最简练的方式列举出来 安装 写在前面 JSX 组件的定义 state 生命周期 方法 条件渲染 列表 表单 组合嵌套 扩展语法 context传递props 错误拦截 r ...

  7. 五颜六色的记事本 Notepad2.cn

    这是一款五颜六色的记事本,支持同时五种颜色的标签录入,可随意切换. 考虑到使用者的用眼舒适度,特意采用颜色对比明显并且色调柔和的配色方案,选择通用的微软雅黑字体作为编辑字体,字体工整便于识别. 针对使 ...

  8. maven依赖的添加

      maven可是个管理jar依赖的好玩意,不用再关心导这个jar包那个jar包,这个jar包是谁家的,和谁有啥关系.有了maven,简简单单就搞定,下面以eclipse为例,在一个springboo ...

  9. Android 4学习(7):用户界面 - 基础

    参考<Professional Android 4 Development> Android UI基本元素 下面这些概念是Android UI设计的基础,深入学习和理解它们是Android ...

  10. CSS——常用

    1.超链接样式 a:link {color: #FF0000}  /* 未访问的链接 */a:visited {color: #00FF00} /* 已访问的链接 */a:hover {color: ...