2012-04-10 17:38 45524人阅读 评论(18) 收藏 举报
 分类:
数学之美

版权声明:本文为博主原创文章,未经博主允许不得转载。

SVD分解

SVD分解是LSA的数学基础,本文是我的LSA学习笔记的一部分,之所以单独拿出来,是因为SVD可以说是LSA的基础,要理解LSA必须了解SVD,因此将LSA笔记的SVD一节单独作为一篇文章。本节讨论SVD分解相关数学问题,一个分为3个部分,第一部分讨论线性代数中的一些基础知识,第二部分讨论SVD矩阵分解,第三部分讨论低阶近似。本节讨论的矩阵都是实数矩阵。

基础知识

1. 矩阵的秩:矩阵的秩是矩阵中线性无关的行或列的个数

2. 对角矩阵:对角矩阵是除对角线外所有元素都为零的方阵

3. 单位矩阵:如果对角矩阵中所有对角线上的元素都为1,该矩阵称为单位矩阵

4. 特征值:对一个M x M矩阵C和向量X,如果存在λ使得下式成立

则称λ为矩阵C的特征值,X称为矩阵的特征向量。非零特征值的个数小于等于矩阵的秩。

5. 特征值和矩阵的关系:考虑以下矩阵

该矩阵特征值λ1 = 30,λ2 = 20,λ3 = 1。对应的特征向量

假设VT=(2,4,6) 计算S x VT

有上面计算结果可以看出,矩阵与向量相乘的结果与特征值,特征向量有关。观察三个特征值λ1 = 30,λ2 = 20,λ3 = 1,λ3值最小,对计算结果的影响也最小,如果忽略λ3,那么运算结果就相当于从(60,80,6)转变为(60,80,0),这两个向量十分相近。这也表示了数值小的特征值对矩阵-向量相乘的结果贡献小,影响小。这也是后面谈到的低阶近似的数学基础。

矩阵分解

1. 方阵的分解

1) 设S是M x M方阵,则存在以下矩阵分解

其中U 的列为S的特征向量,为对角矩阵,其中对角线上的值为S的特征值,按从大到小排列:

2) 设S是M x M 方阵,并且是对称矩阵,有M个特征向量。则存在以下分解

其中Q的列为矩阵S的单位正交特征向量,仍表示对角矩阵,其中对角线上的值为S的特征值,按从大到小排列。最后,QT=Q-1,因为正交矩阵的逆等于其转置。

2. 奇异值分解

上面讨论了方阵的分解,但是在LSA中,我们是要对Term-Document矩阵进行分解,很显然这个矩阵不是方阵。这时需要奇异值分解对Term-Document进行分解。奇异值分解的推理使用到了上面所讲的方阵的分解。

假设C是M x N矩阵,U是M x M矩阵,其中U的列为CCT的正交特征向量,V为N x N矩阵,其中V的列为CTC的正交特征向量,再假设r为C矩阵的秩,则存在奇异值分解:

其中CCT和CTC的特征值相同,为

Σ为M X N,其中,其余位置数值为0,的值按大小降序排列。以下是Σ的完整数学定义:

σi称为矩阵C的奇异值。

用C乘以其转置矩阵CT得:

上式正是在上节中讨论过的对称矩阵的分解。

奇异值分解的图形表示:

从图中可以看到Σ虽然为M x N矩阵,但从第N+1行到M行全为零,因此可以表示成N x N矩阵,又由于右式为矩阵相乘,因此U可以表示为M x N矩阵,VT可以表示为N x N矩阵

3. 低阶近似

LSA潜在语义分析中,低阶近似是为了使用低维的矩阵来表示一个高维的矩阵,并使两者之差尽可能的小。本节主要讨论低阶近似和F-范数。

给定一个M x N矩阵C(其秩为r)和正整数k,我们希望找到一个M x N矩阵Ck,其秩不大于K。设X为C与Ck之间的差,X=C – Ck,X的F-范数为

当k远小于r时,称Ck为C的低阶近似,其中X也就是两矩阵之差的F范数要尽可能的小。

SVD可以被用与求低阶近似问题,步骤如下:

1. 给定一个矩阵C,对其奇异值分解:

2. 构造,它是将的第k+1行至M行设为零,也就是把的最小的r-k个(the r-k smallest)奇异值设为零。

3. 计算Ck

回忆在基础知识一节里曾经讲过,特征值数值的大小对矩阵-向量相乘影响的大小成正比,而奇异值和特征值也是正比关系,因此这里选取数值最小的r-k个特征值设为零合乎情理,即我们所希望的C-Ck尽可能的小。完整的证明可以在Introduction to Information Retrieval[2]中找到。

我们现在也清楚了LSA的基本思路:LSA希望通过降低传统向量空间的维度来去除空间中的“噪音”,而降维可以通过SVD实现,因此首先对Term-Document矩阵进行SVD分解,然后降维并构造语义空间。

 
8

奇异值分解(SVD)详解的更多相关文章

  1. 奇异值分解(SVD)详解

    在网上看到有很多文章介绍SVD的,讲的也都不错,但是感觉还是有需要补充的,特别是关于矩阵和映射之间的对应关系.前段时间看了国外的一篇文章,叫A Singularly Valuable Decompos ...

  2. 奇异值分解(SVD)详解及其应用

    参考:https://blog.csdn.net/shenziheng1/article/details/52916278 论文:http://www-users.math.umn.edu/~lerm ...

  3. [机器学习笔记]奇异值分解SVD简介及其在推荐系统中的简单应用

    本文先从几何意义上对奇异值分解SVD进行简单介绍,然后分析了特征值分解与奇异值分解的区别与联系,最后用python实现将SVD应用于推荐系统. 1.SVD详解 SVD(singular value d ...

  4. 奇异值分解(SVD)原理详解及推导(转载)

    转载请声明出处http://blog.csdn.net/zhongkejingwang/article/details/43053513 在网上看到有很多文章介绍SVD的,讲的也都不错,但是感觉还是有 ...

  5. 奇异值分解(SVD)原理详解及推导 (转载)

    转载请声明出处http://blog.csdn.net/zhongkejingwang/article/details/43053513 在网上看到有很多文章介绍SVD的,讲的也都不错,但是感觉还是有 ...

  6. 奇异值分解(SVD)原理详解及推导

    在网上看到有很多文章介绍SVD的,讲的也都不错,但是感觉还是有需要补充的,特别是关于矩阵和映射之间的对应关系.前段时间看了国外的一篇文章,叫A Singularly Valuable Decompos ...

  7. 机器学习之-奇异值分解(SVD)原理详解及推导

    转载 http://blog.csdn.net/zhongkejingwang/article/details/43053513 在网上看到有很多文章介绍SVD的,讲的也都不错,但是感觉还是有需要补充 ...

  8. 【转】奇异值分解(SVD)原理详解及推导

    原文地址:https://blog.csdn.net/zhongkejingwang/article/details/43053513,转载主要方便随时查阅,如有版权要求,请及时联系. 在网上看到有很 ...

  9. SVD分解技术详解

    版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gm ...

  10. SVD在推荐系统中的应用详解以及算法推导

    SVD在推荐系统中的应用详解以及算法推导     出处http://blog.csdn.net/zhongkejingwang/article/details/43083603 前面文章SVD原理及推 ...

随机推荐

  1. 感知器(Perception)

    感知器是一种早期的神经网络模型,由美国学者F.Rosenblatt于1957年提出.感知器中第一次引入了学习的概念,使人脑所具备的学习功能在基于符号处理的数学到了一定程度模拟,所以引起了广泛的关注. ...

  2. 好用的 curl 抓取 页面的封装函数

    由于经常使用php curl 抓取页面的内容,在此mark 平时自己封装的 curl函数,(其实 现在也开始用 Python 来爬了~ ^-^) /** * 封装curl方法 * @author Fr ...

  3. Android JSON And Object Cast

    Ref:JSON字符串转换成Java实体类(POJO) Ref:Java.Json转换方式之二:Jackson Ref:Jackson 框架,轻易转换JSON Ref:几种序列化协议(protobuf ...

  4. CSS选择器(二)

    五.属性选择器. 属性选择器可以根据元素的属性及属性值来选择元素. 简单属性选择 如果希望选择有某个属性的元素,而不论属性值是什么,可以使用简单属性选择器. 例子 1 如果您希望把包含标题(title ...

  5. 搭建SSM项目时报错(org.springframework.jdbc.CannotGetJdbcConnectionException)

    严重: Servlet.service() for servlet [SpringMVC] in context with path [/ssm] threw exception [Request p ...

  6. 第二十四篇、socketserver源码剖析

    这里选择的是python2.7(python3和2.7的源码基本类似) #!/usr/bin/env python # -*- coding:utf-8 -*- import SocketServer ...

  7. Linux Network Namespace

    Linux Network Namespaces Linux kernel在2.6.29中加入了namespaces,用于支持网络的隔离,我们看一下namespace是如何使用的 创建与配置 创建一个 ...

  8. Quartz.Net在C#中的使用

    概述 Quartz.NET是一个开源的作业调度框架,非常适合在平时的工作中,定时轮询数据库同步,定时邮件通知,定时处理数据等. Quartz.NET允许开发人员根据时间间隔(或天)来调度作业.它实现了 ...

  9. HDU1232 畅通工程,并查集

    这里要补充一些知识点,并查集三操作 1.找到父节点递归写法int Findf(int x){ if(father[x]!=x) father[x]=Findf(father[x]); return f ...

  10. Shiro身份认证-JdbcRealm

    Subject 认证主体 Subject认证主体包含两个信息 Principals : 身份,可以是用户名.邮箱.手机号等,用来标识一个登录主体身份. Credentials : 凭证,常见有密码,数 ...