Salesmen

Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu

Traveling salesmen of nhn. (the prestigious Korean internet company) report their current location to the company on a regular basis. They also have to report their new location to the company if they are moving to another location. The company keep each salesman's working path on a map of his working area and uses this path information for the planning of the next work of the salesman. The map of a salesman's working area is represented as a connected and undirected graph, where vertices represent the possible locations of the salesman an edges correspond to the possible movements between locations. Therefore the salesman's working path can be denoted by a sequence of vertices in the graph. Since each salesman reports his position regularly an he can stay at some place for a very long time, the same vertices of the graph can appear consecutively in his working path. Let a salesman's working path be correct if two consecutive vertices correspond either the same vertex or two adjacent vertices in the graph.

For example on the following graph representing the working area of a salesman,

<tex2html_verbatim_mark>

a reported working path [1 2 2 6 5 5 5 7 4] is a correct path. But a reported working path [1 2 2 7 5 5 5 7 4] is not a correct path since there is no edge in the graph between vertices 2 a 7. If we assume that the salesman reports his location every time when he has to report his location (but possibly incorrectly), then the correct path could be [1 2 2 4 5 5 5 7 4], [1 2 4 7 5 5 5 7 4], or [1 2 2 6 5 5 5 7 4].

The length of a working path is the number of vertices in the path. We define the distance between two pathsA = a1a2...an <tex2html_verbatim_mark>and B = b1b2...bn <tex2html_verbatim_mark>of the same length n <tex2html_verbatim_mark>as

dist(AB) = d (aibi)

<tex2html_verbatim_mark>

where

d (ab) = 

<tex2html_verbatim_mark>

Given a graph representing the working area of a salesman and a working path (possible not a correct path),A <tex2html_verbatim_mark>, of a salesman, write a program to compute a correct working path, B <tex2html_verbatim_mark>, of the same length where the distance dist(AB) <tex2html_verbatim_mark>is minimized.

Input

The program is to read the input from standard input. The input consists of T <tex2html_verbatim_mark>test cases. The number of test cases (T) <tex2html_verbatim_mark>is given in the first line of the input. The first line of each test case contains two integers n1<tex2html_verbatim_mark>, n2 <tex2html_verbatim_mark>(3n1100, 2n24, 950) <tex2html_verbatim_mark>where n1 <tex2html_verbatim_mark>is the number of vertices of the graph representing the working map of a salesman and n2 <tex2html_verbatim_mark>is the number of edges in the graph. The input graph is a connected graph. Each vertex of the graph is numbered from 1 to n1 <tex2html_verbatim_mark>. In the following n2 <tex2html_verbatim_mark>lines, each line contains a pair of vertices which represent an edge of the graph. The last line of each test case contains information on a working path of the salesman. The first integer n <tex2html_verbatim_mark>(2n200) <tex2html_verbatim_mark>in the line is the length of the path and the following n integers represent the sequence of vertices in the working path.

Output

Your program is to write to standard output. Print one line for each test case. The line should contain the minimum distance of the input path to a correct path of the same length.

Sample Input

2
7 9
1 2
2 3
2 4
2 6
3 4
4 5
5 6
7 4
7 5
9 1 2 2 7 5 5 5 7 4
7 9
1 2
2 3
2 4
2 6
3 4
4 5
5 6
7 4
7 5
9 1 2 2 6 5 5 5 7 4

Sample Output

1
0
 #include<stdio.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<algorithm>
using namespace std; vector<int>edg[];
int dp[][],path[]; int main()
{
int T;
int i,j,k;
int n,m,l;
int x,y;
scanf("%d",&T);
while(T--)
{
scanf("%d %d",&n,&m); for(j=;j<=n;j++)
{
dp[][j]=;
}
for(i=;i<=n;i++)
{
edg[i].clear();
edg[i].push_back(i);
} for(i=;i<=m;i++)
{
scanf("%d %d",&x,&y);
edg[x].push_back(y);
edg[y].push_back(x);
}
scanf("%d",&l);
for(i=;i<=l;i++)
{
scanf("%d",&path[i]);
} dp[][path[]]=;
for(i=;i<=l;i++)
{
for(j=;j<=n;j++)
{
int v=edg[j][];
dp[i][j]=dp[i-][v]+;
for(k=;k<edg[j].size();k++)
{
v=edg[j][k];
dp[i][j]=min(dp[i][j],dp[i-][v]+);
}
}
dp[i][path[i]]--;
}
int ans=;
for(i=;i<=n;i++)
{
//printf("%d\n",dp[2][i]);
if(dp[l][i]<ans)
ans=dp[l][i];
}
printf("%d\n",ans);
}
return ;
}

UVA 1424 二 Salesmen的更多相关文章

  1. 递推DP UVA 1424 Salesmen

    题目传送门 /* 题意:给定包含n个点的无向图和一个长度为L的序列,修改尽量少的点使得相邻的数字相同或连通 DP:状态转移方程:dp[i][j] = min (dp[i][j], dp[i-1][k] ...

  2. UVA题解二

    UVA题解二 UVA 110 题目描述:输出一个Pascal程序,该程序能读入不多于\(8\)个数,并输出从小到大排好序后的数.注意:该程序只能用读入语句,输出语句,if语句. solution 模仿 ...

  3. Problem W UVA 662 二十三 Fast Food

    Fast Food Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu Submit Status P ...

  4. UVA 607 二十二 Scheduling Lectures

    Scheduling Lectures Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu Submi ...

  5. UVA 442 二十 Matrix Chain Multiplication

    Matrix Chain Multiplication Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & %l ...

  6. UVA 590 二十一 Always on the run

     Always on the run Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu Submit ...

  7. uva 11178二维几何(点与直线、点积叉积)

    Problem D Morley’s Theorem Input: Standard Input Output: Standard Output Morley’s theorem states tha ...

  8. UVA 11019 二维匹配 AC自动机

    这个题目要求在一个大矩阵里面匹配一个小矩阵,是AC自动机的灵活应用 思路是逐行按普通AC自动机匹配,用过counts[i][j]记录一下T字符矩阵以i行j列为开头的与P等大的矩阵区域 有多少行已经匹配 ...

  9. UVA 10465 Homer Simpson(全然背包: 二维目标条件)

    UVA 10465 Homer Simpson(全然背包: 二维目标条件) http://uva.onlinejudge.org/index.php? option=com_onlinejudge&a ...

随机推荐

  1. Spring容器中的Bean

    一,配置合作者的Bean Bean设置的属性值是容器中的另一个Bean实力,使用<ref.../>元素,可制定一个bean属性,该属性用于指定容器中其他Bean实例的id属性 <be ...

  2. logging

    #coding=utf8 import sys, logging   logging.basicConfig(level=logging.INFO,                     forma ...

  3. Asp.net中后台C#数组与前台Javascript数组交互

    摘自:http://blog.csdn.net/a6225301/article/details/20003305 在上一篇<asp.net中javascript与后台c#交互>中实现了前 ...

  4. XMl的解析

    MainActivitypackage com.example.secondweek_test2; import java.io.BufferedInputStream; import java.io ...

  5. 查找(AVL平衡二叉树)

    [1]为什么需要平衡二叉树? 矛盾是推进事物向前发展的源动力. 那么平衡二叉树是从哪里来?肯定是有矛盾存在的.请看程来师的分析: [2]什么是平衡二叉树? 平衡二叉树的基本认识: [3]平衡二叉树的构 ...

  6. PL/SQL快捷键

    F8 执行所选中的SQL语句 当光标在sql语句末尾/开头 时 按Shift  Home /Shift  End 选中该语句

  7. Linux TTY框架【转】

    本文转载自:http://ju.outofmemory.cn/entry/281168 1. 前言 由于串口的缘故,TTY是Linux系统中最普遍的一类设备,稍微了解Linux系统的同学,对它都不陌生 ...

  8. jquery通过name属性取值的方法

    jquery通过name属性取值的方法//$("input[name='imgtitle']").val();//这个只能取到第一个的值//通过each函数取得所有input的值v ...

  9. jQuery DataTable-JavaScript API

    虽然大多数时候你的Javascript交互将通过使用datatable初始化对象作为描述在使用这个网站的部分,有时,你会发现它有用一些外部控制表.可以使用以下函数从jQuery.dataTable对象 ...

  10. 连接ssh反应很慢,卡,延迟

    1.关闭DNS反向解析在linux中,默认就是开启了SSH的反向DNS解析,这个会消耗大量时间,因此需要关闭.# vi /etc/ssh/sshd_configUseDNS=no 在配置文件中,虽然U ...