Group Projects


Description

There are n students in a class working on group projects. The students will divide into groups (some students may be in groups alone), work on their independent pieces, and then discuss the results together. It takes the i-th student ai minutes to finish his/her independent piece.

If students work at different paces, it can be frustrating for the faster students and stressful for the slower ones. In particular, the imbalance of a group is defined as the maximum ai in the group minus the minimum ai in the group. Note that a group containing a single student has an imbalance of 0. How many ways are there for the students to divide into groups so that the total imbalance of all groups is at most k?

Two divisions are considered distinct if there exists a pair of students who work in the same group in one division but different groups in the other.

Input

The first line contains two space-separated integers n and k (1 ≤ n ≤ 200, 0 ≤ k ≤ 1000) — the number of students and the maximum total imbalance allowed, respectively.

The second line contains n space-separated integers ai (1 ≤ ai ≤ 500) — the time it takes the i-th student to complete his/her independent piece of work.

Output

Print a single integer, the number of ways the students can form groups. As the answer may be large, print its value modulo \(10^9 + 7\).

Sample Input

3 2

2 4 5

Sample Output

3


题目大意

有n个商品,每个商品有不同的价值。要求把这些商品分组,每组有一个值为组内商品的最大价值差,问是这些每组值的和不超过m的方案数,答案对\(1e9+7\)取模。

这道题的定义比较难,首先我们我们对商品按其价值由小到大进行排序。我们可以发现,每一组的价值差为相邻商品价值差的和。

定义dp[i][j][k]表示前i件商品还有j组未完成,差值为k的分组种数。

共有4种转移方案

temp = (a[i] - a[i-1]) * j;

  1. 第i件商品加入一个新分组,并且该分组未完成; dp[i][j+1][k] = dp[i][j+1][k] + dp[i-1][j][k-temp];
  2. 第i件商品加入一个新分组,并且该分组只有一个元素;dp[i][j][k] = dp[i][j][k] + dp[i-1][j][k-temp];
  3. 第i件商品加入一个之前的分组,并且该分组未完成; dp[i][j][k] = dp[i][j][k] + dp[i-1][j][k-temp] * j;
  4. 第i件商品加入一个之前的分组,并且该分组已完成。 dp[i][j-1][k] = dp[i][j-1][k] + dp[i-1][j][k-temp] * j;

每一个转移都只与i 和 i-1有关,所以我们可以用滚动数组进行优化,

时间复杂度为\(O(n^2k)\), 空间复杂度为\(nk\).

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std; const int mod = 1e9 + 7;
int n,m;
int dp[2][210][1010];
int a[210]; int main(){
ios::sync_with_stdio(false); cin.tie(0);
cin >> n >> m;
for(int i = 1;i <= n;i++)cin >> a[i];
sort(a + 1,a + n + 1); dp[0][0][0] = 1;
int cur = 0;
for(int i = 1;i <= n;i++){
cur ^= 1;
memset(dp[cur],0,sizeof(dp[cur]));
int v = a[i] - a[i-1];
for(int j = 0;j < i;j++){
int temp = v * j;
for(int k = temp;k <= m;k++){
dp[cur][j + 1][k] = (dp[cur][j + 1][k] + dp[cur^1][j][k-temp]) % mod;
dp[cur][j][k] = (dp[cur][j][k] + dp[cur^1][j][k-temp]) % mod;
if(j)dp[cur][j-1][k] = (dp[cur][j-1][k] + (long long)dp[cur^1][j][k-temp] * j) % mod;
if(j)dp[cur][j][k] = (dp[cur][j][k] + (long long)dp[cur^1][j][k-temp] * j) % mod;
}
}
}
int ans = 0;
for(int i = 0;i <= m;i++)
ans = (ans + dp[cur][0][i]) % mod;
cout << ans << endl;
return 0;
}

[Codeforces626F] Group Projects (DP)的更多相关文章

  1. 8VC Venture Cup 2016 - Elimination Round F - Group Projects dp好题

    F - Group Projects 题目大意:给你n个物品, 每个物品有个权值ai, 把它们分成若干组, 总消耗为每组里的最大值减最小值之和. 问你一共有多少种分组方法. 思路:感觉刚看到的时候的想 ...

  2. 8VC Venture Cup 2016 - Elimination Round F. Group Projects dp

    F. Group Projects 题目连接: http://www.codeforces.com/contest/626/problem/F Description There are n stud ...

  3. DP的序--Codeforces626F. Group Projects

    $n \leq 200$个数,$ \leq 500$,$K \leq 1000$代价内的数字分组有多少?一个分组的代价是分成的每个小组的总代价:一个小组的代价是极差. 问的极差那就从极入手嘛.一个小组 ...

  4. Codeforces 626F Group Projects(滚动数组+差分dp)

    F. Group Projects time limit per test:2 seconds memory limit per test:256 megabytes input:standard i ...

  5. Codeforces 8VC Venture Cup 2016 - Elimination Round F. Group Projects 差分DP*****

    F. Group Projects   There are n students in a class working on group projects. The students will div ...

  6. 【CodeForces】626 F. Group Projects 动态规划

    [题目]F. Group Projects [题意]给定k和n个数字ai,要求分成若干集合使得每个集合内部极差的总和不超过k的方案数.n<=200,m<=1000,1<=ai< ...

  7. [CF626F]Group Projects

    [CF626F]Group Projects 题目大意: 有一个长度为\(n(n\le200)\)的数列\(\{A_i\}\),将其划分成若干个子集,每个子集贡献为子集\(\max-\min\).求子 ...

  8. Codeforces 626F Group Projects (DP)

    题目链接  8VC Venture Cup 2016 - Elimination Round 题意  把$n$个物品分成若干组,每个组的代价为组内价值的极差,求所有组的代价之和不超过$k$的方案数. ...

  9. VK Cup 2015 - Round 2 (unofficial online mirror, Div. 1 only) B. Work Group 树形dp

    题目链接: http://codeforces.com/problemset/problem/533/B B. Work Group time limit per test2 secondsmemor ...

随机推荐

  1. Openssl生成根证书、服务器证书并签核证书

    1.修改Openssl配置文件CA目录: cat /etc/pki/tls/openssl.cnf dir = /etc/pki/CA 2.生成根证书及私钥: #http://www.haiyun.m ...

  2. JSon_零基础_001_将布尔类型数组转换为JSon格式字符串,返回给界面

    将布尔类型数组转换为JSon格式字符串,返回给界面 需要导入包: 编写bean: package com.west.webcourse.po; /** * 第01步:编写bean类, * 下一步com ...

  3. Centos配置Caffe详解

    http://www.tuicool.com/articles/uiuA3e

  4. beta-1阶段各组员的贡献分分配

    小组名称:nice! 小组成员:李权 于淼 刘芳芳 韩媛媛 宫丽君 项目内容:约跑app 分数分配规则 个人贡献分=基本贡献分*0.2+特殊贡献分*0.3+个人代码贡献量*0.5 其中 基本贡献分,特 ...

  5. 【ibus】设置ibus输入法(pinyin & sunpinyin)

    设置ibus-pinyin 在终端中运行 /usr/lib/ibus-pinyin/ibus-setup-pinyin 命令可以调出ibus的完整设置对话框 设置ibus-sunpinyin 可以执行 ...

  6. 操作系统双语阅读 - Schedulers调度器2

    Most processes can be described as either I/O bound or CPU bound. 大多数进程都可以描述为IO绑定或者CPU绑定. An I/O-bou ...

  7. Asp.Net MVC 模型验证详解-实现客户端、服务端双重验证

    概要 在asp.net webform开发中经常会对用户提交输入的信息进行校验,一般为了安全起见大家都会在客户端进行Javascript(利于交互).服务端双重校验(安全).书写校验代码是一个繁琐的过 ...

  8. 161012、JAVA读写文件,如何避免中文乱码

    1.JAVA读取文件,避免中文乱码. /** * 读取文件内容 * * @param filePathAndName * String 如 c:\\1.txt 绝对路径 * @return boole ...

  9. 如何清除DNS缓存,使用cmd命令清理DNS缓存方法

    如何清除DNS缓存,使用cmd命令清理DNS缓存方法 有时候电脑突然上不了网,或者存在某些网站打不开的情况,但别的网站又可以打开,解决办法需要清除DNS缓存,那么如何清除DNS缓存呢,最常用的方法就是 ...

  10. Java中删除指定文件夹文件夹下面有内容也删除使用递归方案

    import java.io.File; import java.text.ParseException; import java.text.SimpleDateFormat; import java ...