Transfer water

Time Limit: 5000/3000 MS (Java/Others)    Memory Limit: 65768/65768 K (Java/Others)
Total Submission(s): 3995    Accepted Submission(s): 1438

Problem Description
XiaoA lives in a village. Last year flood rained the village. So they decide to move the whole village to the mountain nearby this year. There is no spring in the mountain, so each household could only dig a well or build a water line from other household. If the household decide to dig a well, the money for the well is the height of their house multiplies X dollar per meter. If the household decide to build a water line from other household, and if the height of which supply water is not lower than the one which get water, the money of one water line is the Manhattan distance of the two households multiplies Y dollar per meter. Or if the height of which supply water is lower than the one which get water, a water pump is needed except the water line. Z dollar should be paid for one water pump. In addition,therelation of the households must be considered. Some households may do not allow some other households build a water line from there house. Now given the 3‐dimensional position (a, b, c) of every household the c of which means height, can you calculate the minimal money the whole village need so that every household has water, or tell the leader if it can’t be done.
 
Input
Multiple cases. 
First line of each case contains 4 integers n (1<=n<=1000), the number of the households, X (1<=X<=1000), Y (1<=Y<=1000), Z (1<=Z<=1000). 
Each of the next n lines contains 3 integers a, b, c means the position of the i‐th households, none of them will exceeded 1000. 
Then next n lines describe the relation between the households. The n+i+1‐th line describes the relation of the i‐th household. The line will begin with an integer k, and the next k integers are the household numbers that can build a water line from the i‐th household. 
If n=X=Y=Z=0, the input ends, and no output for that. 
 
Output
One integer in one line for each case, the minimal money the whole village need so that every household has water. If the plan does not exist, print “poor XiaoA” in one line. 
 
Sample Input
2 10 20 30
1 3 2
2 4 1
1 2
2 1 2
0 0 0 0
 
Sample Output
30

Hint

In 3‐dimensional space Manhattan distance of point A (x1, y1, z1) and B(x2, y2, z2) is |x2‐x1|+|y2‐y1|+|z2‐z1|.

 
Source

------------ 遇到一个国人发明的算法(algorithm)--------

下面就开始简单的剖析一下,下面的部分吧!  看图

----------~~~~~~~~~~~~~~~魔板AC~~~~~~~~~~~~~--------------

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
#define maxn 1010
#define type int
const int inf = ~0u >> ;
struct node
{
int u,v;
type cost;
node(){}
node(int _u,int _v,type _c):u(_u),v(_v),cost(_c){}
}e[maxn * maxn];
int pre[maxn],id[maxn],vis[maxn];
type in[maxn];
type dirmst(int root,int nv,int ne)
{
type ret = ;
while()
{
//find the smallest in-arc
fill(in,in + nv,inf);
for(int i = ;i < ne;i++)
{
int u = e[i].u;
int v = e[i].v;
if(e[i].cost < in[v] && u != v)
{
pre[v] = u;
in[v] = e[i].cost;
}
}
for(int i = ;i < nv;i++)
{
if(i == root)
continue;
if(in[i] == inf)
return -;//there are some nodes other than root with no in-arc connected to it
}
//find the dir circle
int cntnode = ;
fill(id,id + nv,-);
fill(vis,vis + nv,-);
in[root] = ;
for(int i = ;i < nv;i++)
{
ret += in[i];
int v = i;
while(vis[v] != i && id[v] == - && v != root)
{
vis[v] = i;
v = pre[v];
}
if(v != root && id[v] == -)
{
for(int u = pre[v]; u != v;u = pre[u])
id[u] = cntnode;
id[v] = cntnode++;
}
}
if(cntnode == )
break;//no circle
for(int i = ;i < nv;i++)
if(id[i] == -)
id[i] = cntnode++;
//compress the nodes
for(int i = ;i < ne;i++)
{
int v = e[i].v;
e[i].u = id[e[i].u];
e[i].v = id[e[i].v];
if(e[i].u != e[i].v)
e[i].cost -= in[v];
}
nv = cntnode;
root = id[root];
}
return ret;
}
int n,tot,X,Y,Z;
int ab(int x)
{
return x >= ?x:-x;
}
struct point
{
int x,y,z;
point(){}
point(int a,int b,int c):x(a),y(b),z(c){}
point operator - (const point p)
{
return point(x - p.x,y - p.y,z - p.z);
}
int dis()
{
return ab(x) + ab(y) + ab(z);
}
}p[maxn];
int main()
{
while(scanf("%d %d %d %d",&n,&X,&Y,&Z) == && (n || X || Y || Z))
{
tot = ;
for(int i = ;i <= n;i++)
{
int a,b,c;
scanf("%d %d %d",&a,&b,&c);
p[i] = point(a,b,c);
e[tot++] = node(,i,ab(p[i].z) * X);
}
for(int i = ;i <= n;i++)
{
int opt;
scanf("%d",&opt);
for(int j = ;j < opt;j++)
{
int a;
scanf("%d",&a);
if(a == i)
continue;
int temp = Y * (p[i] - p[a]).dis();
if(p[i].z < p[a].z)
temp += Z;
e[tot++] = node(i,a,temp);
}
}
int ans = dirmst(,n + ,tot);
if(ans == -)
puts("poor XiaoA");
else
printf("%d\n",ans);
}
}

hdu 4009 Transfer water(最小型树图)的更多相关文章

  1. HDU 4009——Transfer water——————【最小树形图、不定根】

    Transfer water Time Limit:3000MS     Memory Limit:65768KB     64bit IO Format:%I64d & %I64u Subm ...

  2. HDU - 4009 - Transfer water 朱刘算法 +建立虚拟节点

    HDU - 4009:http://acm.hdu.edu.cn/showproblem.php?pid=4009 题意: 有n户人家住在山上,现在每户人家(x,y,z)都要解决供水的问题,他可以自己 ...

  3. HDU 4009 Transfer water

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4009 题意:给出一个村庄(x,y,z).每个村庄可以挖井或者修建水渠从其他村庄得到水.挖井有一个代价, ...

  4. HDU 4009 Transfer water(最小树形图)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4009 题意:给出一个村庄(x,y,z).每个村庄可以挖井或者修建水渠从其他村庄得到水.挖井有一个代价, ...

  5. HDU 4009 Transfer water 最小树形图

    分析:建一个远点,往每个点连建井的价值(单向边),其它输水线按照题意建单向边 然后以源点为根的权值最小的有向树就是答案,套最小树形图模板 #include <iostream> #incl ...

  6. HDOJ 4009 Transfer water 最小树形图

    Transfer water Time Limit: 5000/3000 MS (Java/Others)    Memory Limit: 65768/65768 K (Java/Others) T ...

  7. HDU4009:Transfer water(有向图的最小生成树)

    Transfer water Time Limit: 5000/3000 MS (Java/Others)    Memory Limit: 65768/65768 K (Java/Others)To ...

  8. HDU 5832 A water problem(某水题)

    p.MsoNormal { margin: 0pt; margin-bottom: .0001pt; text-align: justify; font-family: Calibri; font-s ...

  9. hdu 2121 , hdu 4009 无定根最小树形图

    hdu 2121 题目:给出m条有向路,根不确定,求一棵最小的有向生成树. 分析:增加一个虚拟节点,连向n个节点,费用为inf(至少比sigma(cost_edge)大).以该虚拟节点为根求一遍最小树 ...

随机推荐

  1. Android 获取存储空间

    package com.example.getMem; import java.io.File; import android.os.Build;import android.os.Bundle;im ...

  2. Cheatsheet: 2013 12.01 ~ 12.16

    Mobile Performance Tuning On Android Interoperation Issues in Mixed C/C++/Objective-C Development We ...

  3. 禁止在 .NET Framework 中执行用户代码。启用 "clr enabled" 配置选项

    exec sp_configure 'show advanced options', '1';goreconfigure;goexec sp_configure 'clr enabled', '1'g ...

  4. mysql查询中通配符的使用

    mysql查询中通配符的使用     在mysql查询中经常会使用通配符,并且mysql的通配符和pgsql的存在区别(稍候再讨论),而且mysql中还可以使用正则表达式. SQL模式匹配: “_” ...

  5. [HIHO119]网络流五·最大权闭合子图(最大流)

    题目链接:http://hihocoder.com/contest/hiho119/problem/1 题意:中文题意. 由于1≤N≤200,1≤M≤200.最极端情况就是中间所有边都是满的,一共有N ...

  6. SpringMVC 使用Form标签库制作登录表单

    <%@ page language="java" import="java.util.*" pageEncoding="UTF-8"% ...

  7. Smart Forms&ScriptFrom

    声明:原创作品,转载时请注明文章来自SAP师太技术博客( 博/客/园www.cnblogs.com):www.cnblogs.com/jiangzhengjun,并以超链接形式标明文章原始出处,否则将 ...

  8. NPOI大数据分批写入同个Excel

    实现过程: 要导出来的数据库数据量很大,一次取出来压力有点大,故分批取出来,导入到同一个Excel. 因为Excel2003版最大行数是65536行,Excel2007开始的版本最大行数是104857 ...

  9. 转 谈谈android反编译和防止反编译的方法

    谈谈android反编译和防止反编译的方法   android基于java的,而java反编译工具很强悍,所以对正常apk应用程序基本上可以做到100%反编译还原. 因此开发人员如果不准备开源自己的项 ...

  10. java程序设计单一原则

    在我的程序设计中一般一个类就负责一个职责 ex: class Animal{ public void brether(String animal){ System.out.println(animal ...