摘自http://www.opensource.apple.com/source/gcc/gcc-5484/gcc/gcov.c

 /* Gcov.c: prepend line execution counts and branch probabilities to a
source file.
Copyright (C) 1990, 1991, 1992, 1993, 1994, 1996, 1997, 1998,
1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
Contributed by James E. Wilson of Cygnus Support.
Mangled by Bob Manson of Cygnus Support.
Mangled further by Nathan Sidwell <nathan@codesourcery.com> Gcov is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version. Gcov is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details. You should have received a copy of the GNU General Public License
along with Gcov; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */ /* ??? Print a list of the ten blocks with the highest execution counts,
and list the line numbers corresponding to those blocks. Also, perhaps
list the line numbers with the highest execution counts, only printing
the first if there are several which are all listed in the same block. */ /* ??? Should have an option to print the number of basic blocks, and the
percent of them that are covered. */ /* ??? Does not correctly handle the case where two .bb files refer to
the same included source file. For example, if one has a short
file containing only inline functions, which is then included in
two other files, then there will be two .bb files which refer to
the include file, but there is no way to get the total execution
counts for the included file, can only get execution counts for one
or the other of the including files. this can be fixed by --ratios
--long-file-names --preserve-paths and perl. */ /* Need an option to show individual block counts, and show
probabilities of fall through arcs. */ #include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "intl.h"
#include "version.h" #include <getopt.h> #define IN_GCOV 1
#include "gcov-io.h"
#include "gcov-io.c" /* The bbg file is generated by -ftest-coverage option. The da file is
generated by a program compiled with -fprofile-arcs. Their formats
are documented in gcov-io.h. */ /* The functions in this file for creating and solution program flow graphs
are very similar to functions in the gcc source file profile.c. In
some places we make use of the knowledge of how profile.c works to
select particular algorithms here. */ /* This is the size of the buffer used to read in source file lines. */ #define STRING_SIZE 200 struct function_info;
struct block_info;
struct source_info; /* Describes an arc between two basic blocks. */ typedef struct arc_info
{
/* source and destination blocks. */
struct block_info *src;
struct block_info *dst; /* transition counts. */
gcov_type count;
/* used in cycle search, so that we do not clobber original counts. */
gcov_type cs_count; unsigned int count_valid : ;
unsigned int on_tree : ;
unsigned int fake : ;
unsigned int fall_through : ; /* Arc is for a function that abnormally returns. */
unsigned int is_call_non_return : ; /* Arc is for catch/setjump. */
unsigned int is_nonlocal_return : ; /* Is an unconditional branch. */
unsigned int is_unconditional : ; /* Loop making arc. */
unsigned int cycle : ; /* Next branch on line. */
struct arc_info *line_next; /* Links to next arc on src and dst lists. */
struct arc_info *succ_next;
struct arc_info *pred_next;
} arc_t; /* Describes a basic block. Contains lists of arcs to successor and
predecessor blocks. */ typedef struct block_info
{
/* Chain of exit and entry arcs. */
arc_t *succ;
arc_t *pred; /* Number of unprocessed exit and entry arcs. */
gcov_type num_succ;
gcov_type num_pred; /* Block execution count. */
gcov_type count;
unsigned flags : ;
unsigned count_valid : ;
unsigned valid_chain : ;
unsigned invalid_chain : ; /* Block is a call instrumenting site. */
unsigned is_call_site : ; /* Does the call. */
unsigned is_call_return : ; /* Is the return. */ /* Block is a landing pad for longjmp or throw. */
unsigned is_nonlocal_return : ; union
{
struct
{
/* Array of line numbers and source files. source files are
introduced by a linenumber of zero, the next 'line number' is
the number of the source file. Always starts with a source
file. */
unsigned *encoding;
unsigned num;
} line; /* Valid until blocks are linked onto lines */
struct
{
/* Single line graph cycle workspace. Used for all-blocks
mode. */
arc_t *arc;
unsigned ident;
} cycle; /* Used in all-blocks mode, after blocks are linked onto
lines. */
} u; /* Temporary chain for solving graph, and for chaining blocks on one
line. */
struct block_info *chain; } block_t; /* Describes a single function. Contains an array of basic blocks. */ typedef struct function_info
{
/* Name of function. */
char *name;
unsigned ident;
unsigned checksum; /* Array of basic blocks. */
block_t *blocks;
unsigned num_blocks;
unsigned blocks_executed; /* Raw arc coverage counts. */
gcov_type *counts;
unsigned num_counts; /* First line number. */
unsigned line;
struct source_info *src; /* Next function in same source file. */
struct function_info *line_next; /* Next function. */
struct function_info *next;
} function_t; /* Describes coverage of a file or function. */ typedef struct coverage_info
{
int lines;
int lines_executed; int branches;
int branches_executed;
int branches_taken; int calls;
int calls_executed; char *name;
} coverage_t; /* Describes a single line of source. Contains a chain of basic blocks
with code on it. */ typedef struct line_info
{
gcov_type count; /* execution count */
union
{
arc_t *branches; /* branches from blocks that end on this
line. Used for branch-counts when not
all-blocks mode. */
block_t *blocks; /* blocks which start on this line. Used
in all-blocks mode. */
} u;
unsigned exists : ;
} line_t; /* Describes a file mentioned in the block graph. Contains an array
of line info. */ typedef struct source_info
{
/* Name of source file. */
char *name;
unsigned index; /* Array of line information. */
line_t *lines;
unsigned num_lines; coverage_t coverage; /* Functions in this source file. These are in ascending line
number order. */
function_t *functions; /* Next source file. */
struct source_info *next;
} source_t; /* Holds a list of function basic block graphs. */ static function_t *functions; /* This points to the head of the sourcefile structure list. */ static source_t *sources; /* This holds data summary information. */ static struct gcov_summary object_summary;
static unsigned program_count; /* Modification time of graph file. */ static time_t bbg_file_time; /* Name and file pointer of the input file for the basic block graph. */ static char *bbg_file_name; /* Stamp of the bbg file */
static unsigned bbg_stamp; /* Name and file pointer of the input file for the arc count data. */ static char *da_file_name; /* Output branch probabilities. */ static int flag_branches = ; /* Show unconditional branches too. */
static int flag_unconditional = ; /* Output a gcov file if this is true. This is on by default, and can
be turned off by the -n option. */ static int flag_gcov_file = ; /* For included files, make the gcov output file name include the name
of the input source file. For example, if x.h is included in a.c,
then the output file name is a.c##x.h.gcov instead of x.h.gcov. */ static int flag_long_names = ; /* Output count information for every basic block, not merely those
that contain line number information. */ static int flag_all_blocks = ; /* Output summary info for each function. */ static int flag_function_summary = ; /* Object directory file prefix. This is the directory/file where the
graph and data files are looked for, if nonzero. */ static char *object_directory = ; /* Preserve all pathname components. Needed when object files and
source files are in subdirectories. '/' is mangled as '#', '.' is
elided and '..' mangled to '^'. */ static int flag_preserve_paths = ; /* Output the number of times a branch was taken as opposed to the percentage
of times it was taken. */ static int flag_counts = ; /* Forward declarations. */
static void fnotice (FILE *, const char *, ...) ATTRIBUTE_PRINTF_2;
static int process_args (int, char **);
static void print_usage (int) ATTRIBUTE_NORETURN;
static void print_version (void) ATTRIBUTE_NORETURN;
static void process_file (const char *);
static void create_file_names (const char *);
static source_t *find_source (const char *);
static int read_graph_file (void);
static int read_count_file (void);
static void solve_flow_graph (function_t *);
static void add_branch_counts (coverage_t *, const arc_t *);
static void add_line_counts (coverage_t *, function_t *);
static void function_summary (const coverage_t *, const char *);
static const char *format_gcov (gcov_type, gcov_type, int);
static void accumulate_line_counts (source_t *);
static int output_branch_count (FILE *, int, const arc_t *);
static void output_lines (FILE *, const source_t *);
static char *make_gcov_file_name (const char *, const char *);
static void release_structures (void);
extern int main (int, char **); int
main (int argc, char **argv)
{
int argno; /* Unlock the stdio streams. */
unlock_std_streams (); gcc_init_libintl (); argno = process_args (argc, argv);
if (optind == argc)
print_usage (true); for (; argno != argc; argno++)
{
release_structures (); process_file (argv[argno]);
} return ;
} static void
fnotice (FILE *file, const char *cmsgid, ...)
{
va_list ap; va_start (ap, cmsgid);
vfprintf (file, _(cmsgid), ap);
va_end (ap);
} /* Print a usage message and exit. If ERROR_P is nonzero, this is an error,
otherwise the output of --help. */ static void
print_usage (int error_p)
{
FILE *file = error_p ? stderr : stdout;
int status = error_p ? FATAL_EXIT_CODE : SUCCESS_EXIT_CODE; fnotice (file, "Usage: gcov [OPTION]... SOURCEFILE\n\n");
fnotice (file, "Print code coverage information.\n\n");
fnotice (file, " -h, --help Print this help, then exit\n");
fnotice (file, " -v, --version Print version number, then exit\n");
fnotice (file, " -a, --all-blocks Show information for every basic block\n");
fnotice (file, " -b, --branch-probabilities Include branch probabilities in output\n");
fnotice (file, " -c, --branch-counts Given counts of branches taken\n\
rather than percentages\n");
fnotice (file, " -n, --no-output Do not create an output file\n");
fnotice (file, " -l, --long-file-names Use long output file names for included\n\
source files\n");
fnotice (file, " -f, --function-summaries Output summaries for each function\n");
fnotice (file, " -o, --object-directory DIR|FILE Search for object files in DIR or called FILE\n");
fnotice (file, " -p, --preserve-paths Preserve all pathname components\n");
fnotice (file, " -u, --unconditional-branches Show unconditional branch counts too\n");
fnotice (file, "\nFor bug reporting instructions, please see:\n%s.\n",
bug_report_url);
exit (status);
} /* Print version information and exit. */ static void
print_version (void)
{
fnotice (stdout, "gcov (GCC) %s\n", version_string);
fprintf (stdout, "Copyright %s 2004 Free Software Foundation, Inc.\n",
_("(C)"));
fnotice (stdout,
_("This is free software; see the source for copying conditions.\n"
"There is NO warranty; not even for MERCHANTABILITY or \n"
"FITNESS FOR A PARTICULAR PURPOSE.\n\n"));
exit (SUCCESS_EXIT_CODE);
} static const struct option options[] =
{
{ "help", no_argument, NULL, 'h' },
{ "version", no_argument, NULL, 'v' },
{ "all-blocks", no_argument, NULL, 'a' },
{ "branch-probabilities", no_argument, NULL, 'b' },
{ "branch-counts", no_argument, NULL, 'c' },
{ "no-output", no_argument, NULL, 'n' },
{ "long-file-names", no_argument, NULL, 'l' },
{ "function-summaries", no_argument, NULL, 'f' },
{ "preserve-paths", no_argument, NULL, 'p' },
{ "object-directory", required_argument, NULL, 'o' },
{ "object-file", required_argument, NULL, 'o' },
{ "unconditional-branches", no_argument, NULL, 'u' },
{ , , , }
}; /* Process args, return index to first non-arg. */ static int
process_args (int argc, char **argv)
{
int opt; while ((opt = getopt_long (argc, argv, "abcfhlno:puv", options, NULL)) != -)
{
switch (opt)
{
case 'a':
flag_all_blocks = ;
break;
case 'b':
flag_branches = ;
break;
case 'c':
flag_counts = ;
break;
case 'f':
flag_function_summary = ;
break;
case 'h':
print_usage (false);
/* print_usage will exit. */
case 'l':
flag_long_names = ;
break;
case 'n':
flag_gcov_file = ;
break;
case 'o':
object_directory = optarg;
break;
case 'p':
flag_preserve_paths = ;
break;
case 'u':
flag_unconditional = ;
break;
case 'v':
print_version ();
/* print_version will exit. */
default:
print_usage (true);
/* print_usage will exit. */
}
} return optind;
} /* Process a single source file. */ static void
process_file (const char *file_name)
{
source_t *src;
function_t *fn; create_file_names (file_name);
if (read_graph_file ())
return; if (!functions)
{
fnotice (stderr, "%s:no functions found\n", bbg_file_name);
return;
} if (read_count_file ())
return; for (fn = functions; fn; fn = fn->next)
solve_flow_graph (fn);
for (src = sources; src; src = src->next)
src->lines = xcalloc (src->num_lines, sizeof (line_t));
for (fn = functions; fn; fn = fn->next)
{
coverage_t coverage; memset (&coverage, , sizeof (coverage));
coverage.name = fn->name;
add_line_counts (flag_function_summary ? &coverage : NULL, fn);
if (flag_function_summary)
{
function_summary (&coverage, "Function");
fnotice (stdout, "\n");
}
} for (src = sources; src; src = src->next)
{
accumulate_line_counts (src);
function_summary (&src->coverage, "File");
if (flag_gcov_file)
{
char *gcov_file_name = make_gcov_file_name (file_name, src->name);
FILE *gcov_file = fopen (gcov_file_name, "w"); if (gcov_file)
{
fnotice (stdout, "%s:creating '%s'\n",
src->name, gcov_file_name);
output_lines (gcov_file, src);
if (ferror (gcov_file))
fnotice (stderr, "%s:error writing output file '%s'\n",
src->name, gcov_file_name);
fclose (gcov_file);
}
else
fnotice (stderr, "%s:could not open output file '%s'\n",
src->name, gcov_file_name);
free (gcov_file_name);
}
fnotice (stdout, "\n");
}
} /* Release all memory used. */ static void
release_structures (void)
{
function_t *fn;
source_t *src; free (bbg_file_name);
free (da_file_name);
da_file_name = bbg_file_name = NULL;
bbg_file_time = ;
bbg_stamp = ; while ((src = sources))
{
sources = src->next; free (src->name);
free (src->lines);
} while ((fn = functions))
{
unsigned ix;
block_t *block; functions = fn->next;
for (ix = fn->num_blocks, block = fn->blocks; ix--; block++)
{
arc_t *arc, *arc_n; for (arc = block->succ; arc; arc = arc_n)
{
arc_n = arc->succ_next;
free (arc);
}
}
free (fn->blocks);
free (fn->counts);
}
} /* Generate the names of the graph and data files. If OBJECT_DIRECTORY
is not specified, these are looked for in the current directory,
and named from the basename of the FILE_NAME sans extension. If
OBJECT_DIRECTORY is specified and is a directory, the files are in
that directory, but named from the basename of the FILE_NAME, sans
extension. Otherwise OBJECT_DIRECTORY is taken to be the name of
the object *file*, and the data files are named from that. */ static void
create_file_names (const char *file_name)
{
char *cptr;
char *name;
int length = strlen (file_name);
int base; if (object_directory && object_directory[])
{
struct stat status; length += strlen (object_directory) + ;
name = xmalloc (length);
name[] = ; base = !stat (object_directory, &status) && S_ISDIR (status.st_mode);
strcat (name, object_directory);
if (base && name[strlen (name) - ] != '/')
strcat (name, "/");
}
else
{
name = xmalloc (length + );
name[] = ;
base = ;
} if (base)
{
/* Append source file name. */
cptr = strrchr (file_name, '/');
strcat (name, cptr ? cptr + : file_name);
} /* Remove the extension. */
cptr = strrchr (name, '.');
if (cptr)
*cptr = ; length = strlen (name); bbg_file_name = xmalloc (length + strlen (GCOV_NOTE_SUFFIX) + );
strcpy (bbg_file_name, name);
strcpy (bbg_file_name + length, GCOV_NOTE_SUFFIX); da_file_name = xmalloc (length + strlen (GCOV_DATA_SUFFIX) + );
strcpy (da_file_name, name);
strcpy (da_file_name + length, GCOV_DATA_SUFFIX); return;
} /* Find or create a source file structure for FILE_NAME. Copies
FILE_NAME on creation */ static source_t *
find_source (const char *file_name)
{
source_t *src; if (!file_name)
file_name = "<unknown>"; for (src = sources; src; src = src->next)
if (!strcmp (file_name, src->name))
return src; src = xcalloc (, sizeof (source_t));
src->name = xstrdup (file_name);
src->coverage.name = src->name;
src->index = sources ? sources->index + : ;
src->next = sources;
sources = src; return src;
} /* Read the graph file. Return nonzero on fatal error. */ static int
read_graph_file (void)
{
unsigned version;
unsigned current_tag = ;
struct function_info *fn = NULL;
source_t *src = NULL;
unsigned ix;
unsigned tag; if (!gcov_open (bbg_file_name, ))
{
fnotice (stderr, "%s:cannot open graph file\n", bbg_file_name);
return ;
}
bbg_file_time = gcov_time ();
if (!gcov_magic (gcov_read_unsigned (), GCOV_NOTE_MAGIC))
{
fnotice (stderr, "%s:not a gcov graph file\n", bbg_file_name);
gcov_close ();
return ;
} version = gcov_read_unsigned ();
if (version != GCOV_VERSION)
{
char v[], e[]; GCOV_UNSIGNED2STRING (v, version);
GCOV_UNSIGNED2STRING (e, GCOV_VERSION); fnotice (stderr, "%s:version '%.4s', prefer '%.4s'\n",
bbg_file_name, v, e);
}
bbg_stamp = gcov_read_unsigned (); while ((tag = gcov_read_unsigned ()))
{
unsigned length = gcov_read_unsigned ();
gcov_position_t base = gcov_position (); if (tag == GCOV_TAG_FUNCTION)
{
char *function_name;
unsigned ident, checksum, lineno;
source_t *src;
function_t *probe, *prev; ident = gcov_read_unsigned ();
checksum = gcov_read_unsigned ();
function_name = xstrdup (gcov_read_string ());
src = find_source (gcov_read_string ());
lineno = gcov_read_unsigned (); fn = xcalloc (, sizeof (function_t));
fn->name = function_name;
fn->ident = ident;
fn->checksum = checksum;
fn->src = src;
fn->line = lineno; fn->next = functions;
functions = fn;
current_tag = tag; if (lineno >= src->num_lines)
src->num_lines = lineno + ;
/* Now insert it into the source file's list of
functions. Normally functions will be encountered in
ascending order, so a simple scan is quick. */
for (probe = src->functions, prev = NULL;
probe && probe->line > lineno;
prev = probe, probe = probe->line_next)
continue;
fn->line_next = probe;
if (prev)
prev->line_next = fn;
else
src->functions = fn;
}
else if (fn && tag == GCOV_TAG_BLOCKS)
{
if (fn->blocks)
fnotice (stderr, "%s:already seen blocks for '%s'\n",
bbg_file_name, fn->name);
else
{
unsigned ix, num_blocks = GCOV_TAG_BLOCKS_NUM (length);
fn->num_blocks = num_blocks; fn->blocks = xcalloc (fn->num_blocks, sizeof (block_t));
for (ix = ; ix != num_blocks; ix++)
fn->blocks[ix].flags = gcov_read_unsigned ();
}
}
else if (fn && tag == GCOV_TAG_ARCS)
{
unsigned src = gcov_read_unsigned ();
unsigned num_dests = GCOV_TAG_ARCS_NUM (length); if (src >= fn->num_blocks || fn->blocks[src].succ)
goto corrupt; while (num_dests--)
{
struct arc_info *arc;
unsigned dest = gcov_read_unsigned ();
unsigned flags = gcov_read_unsigned (); if (dest >= fn->num_blocks)
goto corrupt;
arc = xcalloc (, sizeof (arc_t)); arc->dst = &fn->blocks[dest];
arc->src = &fn->blocks[src]; arc->count = ;
arc->count_valid = ;
arc->on_tree = !!(flags & GCOV_ARC_ON_TREE);
arc->fake = !!(flags & GCOV_ARC_FAKE);
arc->fall_through = !!(flags & GCOV_ARC_FALLTHROUGH); arc->succ_next = fn->blocks[src].succ;
fn->blocks[src].succ = arc;
fn->blocks[src].num_succ++; arc->pred_next = fn->blocks[dest].pred;
fn->blocks[dest].pred = arc;
fn->blocks[dest].num_pred++; if (arc->fake)
{
if (src)
{
/* Exceptional exit from this function, the
source block must be a call. */
fn->blocks[src].is_call_site = ;
arc->is_call_non_return = ;
}
else
{
/* Non-local return from a callee of this
function. The destination block is a catch or
setjmp. */
arc->is_nonlocal_return = ;
fn->blocks[dest].is_nonlocal_return = ;
}
} if (!arc->on_tree)
fn->num_counts++;
}
}
else if (fn && tag == GCOV_TAG_LINES)
{
unsigned blockno = gcov_read_unsigned ();
unsigned *line_nos = xcalloc (length - , sizeof (unsigned)); if (blockno >= fn->num_blocks || fn->blocks[blockno].u.line.encoding)
goto corrupt; for (ix = ; ; )
{
unsigned lineno = gcov_read_unsigned (); if (lineno)
{
if (!ix)
{
line_nos[ix++] = ;
line_nos[ix++] = src->index;
}
line_nos[ix++] = lineno;
if (lineno >= src->num_lines)
src->num_lines = lineno + ;
}
else
{
const char *file_name = gcov_read_string (); if (!file_name)
break;
src = find_source (file_name); line_nos[ix++] = ;
line_nos[ix++] = src->index;
}
} fn->blocks[blockno].u.line.encoding = line_nos;
fn->blocks[blockno].u.line.num = ix;
}
else if (current_tag && !GCOV_TAG_IS_SUBTAG (current_tag, tag))
{
fn = NULL;
current_tag = ;
}
gcov_sync (base, length);
if (gcov_is_error ())
{
corrupt:;
fnotice (stderr, "%s:corrupted\n", bbg_file_name);
gcov_close ();
return ;
}
}
gcov_close (); /* We built everything backwards, so nreverse them all. */ /* Reverse sources. Not strictly necessary, but we'll then process
them in the 'expected' order. */
{
source_t *src, *src_p, *src_n; for (src_p = NULL, src = sources; src; src_p = src, src = src_n)
{
src_n = src->next;
src->next = src_p;
}
sources = src_p;
} /* Reverse functions. */
{
function_t *fn, *fn_p, *fn_n; for (fn_p = NULL, fn = functions; fn; fn_p = fn, fn = fn_n)
{
unsigned ix; fn_n = fn->next;
fn->next = fn_p; /* Reverse the arcs. */
for (ix = fn->num_blocks; ix--;)
{
arc_t *arc, *arc_p, *arc_n; for (arc_p = NULL, arc = fn->blocks[ix].succ; arc;
arc_p = arc, arc = arc_n)
{
arc_n = arc->succ_next;
arc->succ_next = arc_p;
}
fn->blocks[ix].succ = arc_p; for (arc_p = NULL, arc = fn->blocks[ix].pred; arc;
arc_p = arc, arc = arc_n)
{
arc_n = arc->pred_next;
arc->pred_next = arc_p;
}
fn->blocks[ix].pred = arc_p;
}
}
functions = fn_p;
}
return ;
} /* Reads profiles from the count file and attach to each
function. Return nonzero if fatal error. */ static int
read_count_file (void)
{
unsigned ix;
unsigned version;
unsigned tag;
function_t *fn = NULL;
int error = ; if (!gcov_open (da_file_name, ))
{
fnotice (stderr, "%s:cannot open data file\n", da_file_name);
return ;
}
if (!gcov_magic (gcov_read_unsigned (), GCOV_DATA_MAGIC))
{
fnotice (stderr, "%s:not a gcov data file\n", da_file_name);
cleanup:;
gcov_close ();
return ;
}
version = gcov_read_unsigned ();
if (version != GCOV_VERSION)
{
char v[], e[]; GCOV_UNSIGNED2STRING (v, version);
GCOV_UNSIGNED2STRING (e, GCOV_VERSION); fnotice (stderr, "%s:version '%.4s', prefer version '%.4s'\n",
da_file_name, v, e);
}
tag = gcov_read_unsigned ();
if (tag != bbg_stamp)
{
fnotice (stderr, "%s:stamp mismatch with graph file\n", da_file_name);
goto cleanup;
} while ((tag = gcov_read_unsigned ()))
{
unsigned length = gcov_read_unsigned ();
unsigned long base = gcov_position (); if (tag == GCOV_TAG_OBJECT_SUMMARY)
gcov_read_summary (&object_summary);
else if (tag == GCOV_TAG_PROGRAM_SUMMARY)
program_count++;
else if (tag == GCOV_TAG_FUNCTION)
{
unsigned ident = gcov_read_unsigned ();
struct function_info *fn_n = functions; for (fn = fn ? fn->next : NULL; ; fn = fn->next)
{
if (fn)
;
else if ((fn = fn_n))
fn_n = NULL;
else
{
fnotice (stderr, "%s:unknown function '%u'\n",
da_file_name, ident);
break;
}
if (fn->ident == ident)
break;
} if (!fn)
;
else if (gcov_read_unsigned () != fn->checksum)
{
mismatch:;
fnotice (stderr, "%s:profile mismatch for '%s'\n",
da_file_name, fn->name);
goto cleanup;
}
}
else if (tag == GCOV_TAG_FOR_COUNTER (GCOV_COUNTER_ARCS) && fn)
{
if (length != GCOV_TAG_COUNTER_LENGTH (fn->num_counts))
goto mismatch; if (!fn->counts)
fn->counts = xcalloc (fn->num_counts, sizeof (gcov_type)); for (ix = ; ix != fn->num_counts; ix++)
fn->counts[ix] += gcov_read_counter ();
}
gcov_sync (base, length);
if ((error = gcov_is_error ()))
{
fnotice (stderr, error < ? "%s:overflowed\n" : "%s:corrupted\n",
da_file_name);
goto cleanup;
}
} gcov_close ();
return ;
} /* Solve the flow graph. Propagate counts from the instrumented arcs
to the blocks and the uninstrumented arcs. */ static void
solve_flow_graph (function_t *fn)
{
unsigned ix;
arc_t *arc;
gcov_type *count_ptr = fn->counts;
block_t *blk;
block_t *valid_blocks = NULL; /* valid, but unpropagated blocks. */
block_t *invalid_blocks = NULL; /* invalid, but inferable blocks. */ if (fn->num_blocks < )
fnotice (stderr, "%s:'%s' lacks entry and/or exit blocks\n",
bbg_file_name, fn->name);
else
{
if (fn->blocks[].num_pred)
fnotice (stderr, "%s:'%s' has arcs to entry block\n",
bbg_file_name, fn->name);
else
/* We can't deduce the entry block counts from the lack of
predecessors. */
fn->blocks[].num_pred = ~(unsigned); if (fn->blocks[fn->num_blocks - ].num_succ)
fnotice (stderr, "%s:'%s' has arcs from exit block\n",
bbg_file_name, fn->name);
else
/* Likewise, we can't deduce exit block counts from the lack
of its successors. */
fn->blocks[fn->num_blocks - ].num_succ = ~(unsigned);
} /* Propagate the measured counts, this must be done in the same
order as the code in profile.c */
for (ix = , blk = fn->blocks; ix != fn->num_blocks; ix++, blk++)
{
block_t const *prev_dst = NULL;
int out_of_order = ;
int non_fake_succ = ; for (arc = blk->succ; arc; arc = arc->succ_next)
{
if (!arc->fake)
non_fake_succ++; if (!arc->on_tree)
{
if (count_ptr)
arc->count = *count_ptr++;
arc->count_valid = ;
blk->num_succ--;
arc->dst->num_pred--;
}
if (prev_dst && prev_dst > arc->dst)
out_of_order = ;
prev_dst = arc->dst;
}
if (non_fake_succ == )
{
/* If there is only one non-fake exit, it is an
unconditional branch. */
for (arc = blk->succ; arc; arc = arc->succ_next)
if (!arc->fake)
{
arc->is_unconditional = ;
/* If this block is instrumenting a call, it might be
an artificial block. It is not artificial if it has
a non-fallthrough exit, or the destination of this
arc has more than one entry. Mark the destination
block as a return site, if none of those conditions
hold. */
if (blk->is_call_site && arc->fall_through
&& arc->dst->pred == arc && !arc->pred_next)
arc->dst->is_call_return = ;
}
} /* Sort the successor arcs into ascending dst order. profile.c
normally produces arcs in the right order, but sometimes with
one or two out of order. We're not using a particularly
smart sort. */
if (out_of_order)
{
arc_t *start = blk->succ;
unsigned changes = ; while (changes)
{
arc_t *arc, *arc_p, *arc_n; changes = ;
for (arc_p = NULL, arc = start; (arc_n = arc->succ_next);)
{
if (arc->dst > arc_n->dst)
{
changes = ;
if (arc_p)
arc_p->succ_next = arc_n;
else
start = arc_n;
arc->succ_next = arc_n->succ_next;
arc_n->succ_next = arc;
arc_p = arc_n;
}
else
{
arc_p = arc;
arc = arc_n;
}
}
}
blk->succ = start;
} /* Place it on the invalid chain, it will be ignored if that's
wrong. */
blk->invalid_chain = ;
blk->chain = invalid_blocks;
invalid_blocks = blk;
} while (invalid_blocks || valid_blocks)
{
while ((blk = invalid_blocks))
{
gcov_type total = ;
const arc_t *arc; invalid_blocks = blk->chain;
blk->invalid_chain = ;
if (!blk->num_succ)
for (arc = blk->succ; arc; arc = arc->succ_next)
total += arc->count;
else if (!blk->num_pred)
for (arc = blk->pred; arc; arc = arc->pred_next)
total += arc->count;
else
continue; blk->count = total;
blk->count_valid = ;
blk->chain = valid_blocks;
blk->valid_chain = ;
valid_blocks = blk;
}
while ((blk = valid_blocks))
{
gcov_type total;
arc_t *arc, *inv_arc; valid_blocks = blk->chain;
blk->valid_chain = ;
if (blk->num_succ == )
{
block_t *dst; total = blk->count;
inv_arc = NULL;
for (arc = blk->succ; arc; arc = arc->succ_next)
{
total -= arc->count;
if (!arc->count_valid)
inv_arc = arc;
}
dst = inv_arc->dst;
inv_arc->count_valid = ;
inv_arc->count = total;
blk->num_succ--;
dst->num_pred--;
if (dst->count_valid)
{
if (dst->num_pred == && !dst->valid_chain)
{
dst->chain = valid_blocks;
dst->valid_chain = ;
valid_blocks = dst;
}
}
else
{
if (!dst->num_pred && !dst->invalid_chain)
{
dst->chain = invalid_blocks;
dst->invalid_chain = ;
invalid_blocks = dst;
}
}
}
if (blk->num_pred == )
{
block_t *src; total = blk->count;
inv_arc = NULL;
for (arc = blk->pred; arc; arc = arc->pred_next)
{
total -= arc->count;
if (!arc->count_valid)
inv_arc = arc;
}
src = inv_arc->src;
inv_arc->count_valid = ;
inv_arc->count = total;
blk->num_pred--;
src->num_succ--;
if (src->count_valid)
{
if (src->num_succ == && !src->valid_chain)
{
src->chain = valid_blocks;
src->valid_chain = ;
valid_blocks = src;
}
}
else
{
if (!src->num_succ && !src->invalid_chain)
{
src->chain = invalid_blocks;
src->invalid_chain = ;
invalid_blocks = src;
}
}
}
}
} /* If the graph has been correctly solved, every block will have a
valid count. */
for (ix = ; ix < fn->num_blocks; ix++)
if (!fn->blocks[ix].count_valid)
{
fnotice (stderr, "%s:graph is unsolvable for '%s'\n",
bbg_file_name, fn->name);
break;
}
} /* Increment totals in COVERAGE according to arc ARC. */ static void
add_branch_counts (coverage_t *coverage, const arc_t *arc)
{
if (arc->is_call_non_return)
{
coverage->calls++;
if (arc->src->count)
coverage->calls_executed++;
}
else if (!arc->is_unconditional)
{
coverage->branches++;
if (arc->src->count)
coverage->branches_executed++;
if (arc->count)
coverage->branches_taken++;
}
} /* Format a HOST_WIDE_INT as either a percent ratio, or absolute
count. If dp >= 0, format TOP/BOTTOM * 100 to DP decimal places.
If DP is zero, no decimal point is printed. Only print 100% when
TOP==BOTTOM and only print 0% when TOP=0. If dp < 0, then simply
format TOP. Return pointer to a static string. */ static char const *
format_gcov (gcov_type top, gcov_type bottom, int dp)
{
static char buffer[]; if (dp >= )
{
float ratio = bottom ? (float)top / bottom : ;
int ix;
unsigned limit = ;
unsigned percent; for (ix = dp; ix--; )
limit *= ; percent = (unsigned) (ratio * limit + (float)0.5);
if (percent <= && top)
percent = ;
else if (percent >= limit && top != bottom)
percent = limit - ;
ix = sprintf (buffer, "%.*u%%", dp + , percent);
if (dp)
{
dp++;
do
{
buffer[ix+] = buffer[ix];
ix--;
}
while (dp--);
buffer[ix + ] = '.';
}
}
else
sprintf (buffer, HOST_WIDEST_INT_PRINT_DEC, (HOST_WIDEST_INT)top); return buffer;
} /* Output summary info for a function. */ static void
function_summary (const coverage_t *coverage, const char *title)
{
fnotice (stdout, "%s '%s'\n", title, coverage->name); if (coverage->lines)
fnotice (stdout, "Lines executed:%s of %d\n",
format_gcov (coverage->lines_executed, coverage->lines, ),
coverage->lines);
else
fnotice (stdout, "No executable lines\n"); if (flag_branches)
{
if (coverage->branches)
{
fnotice (stdout, "Branches executed:%s of %d\n",
format_gcov (coverage->branches_executed,
coverage->branches, ),
coverage->branches);
fnotice (stdout, "Taken at least once:%s of %d\n",
format_gcov (coverage->branches_taken,
coverage->branches, ),
coverage->branches);
}
else
fnotice (stdout, "No branches\n");
if (coverage->calls)
fnotice (stdout, "Calls executed:%s of %d\n",
format_gcov (coverage->calls_executed, coverage->calls, ),
coverage->calls);
else
fnotice (stdout, "No calls\n");
}
} /* Generate an output file name. LONG_OUTPUT_NAMES and PRESERVE_PATHS
affect name generation. With preserve_paths we create a filename
from all path components of the source file, replacing '/' with
'#', without it we simply take the basename component. With
long_output_names we prepend the processed name of the input file
to each output name (except when the current source file is the
input file, so you don't get a double concatenation). The two
components are separated by '##'. Also '.' filename components are
removed and '..' components are renamed to '^'. */ static char *
make_gcov_file_name (const char *input_name, const char *src_name)
{
char *cptr;
char *name = xmalloc (strlen (src_name) + strlen (input_name) + ); name[] = ;
if (flag_long_names && strcmp (src_name, input_name))
{
/* Generate the input filename part. */
cptr = flag_preserve_paths ? NULL : strrchr (input_name, '/');
strcat (name, cptr ? cptr + : input_name);
strcat (name, "##");
} /* Generate the source filename part. */
cptr = flag_preserve_paths ? NULL : strrchr (src_name, '/');
strcat (name, cptr ? cptr + : src_name); if (flag_preserve_paths)
{
/* Convert '/' to '#', remove '/./', convert '/../' to '/^/' */
char *prev; for (cptr = name; (cptr = strchr ((prev = cptr), '/'));)
{
unsigned shift = ; if (prev + == cptr && prev[] == '.')
{
/* Remove '.' */
shift = ;
}
else if (prev + == cptr && prev[] == '.' && prev[] == '.')
{
/* Convert '..' */
shift = ;
prev[] = '^';
}
else
*cptr++ = '#';
if (shift)
{
cptr = prev;
do
prev[] = prev[shift];
while (*prev++);
}
}
} strcat (name, ".gcov");
return name;
} /* Scan through the bb_data for each line in the block, increment
the line number execution count indicated by the execution count of
the appropriate basic block. */ static void
add_line_counts (coverage_t *coverage, function_t *fn)
{
unsigned ix;
line_t *line = NULL; /* This is propagated from one iteration to the
next. */ /* Scan each basic block. */
for (ix = ; ix != fn->num_blocks; ix++)
{
block_t *block = &fn->blocks[ix];
unsigned *encoding;
const source_t *src = NULL;
unsigned jx; if (block->count && ix && ix + != fn->num_blocks)
fn->blocks_executed++;
for (jx = , encoding = block->u.line.encoding;
jx != block->u.line.num; jx++, encoding++)
if (!*encoding)
{
unsigned src_n = *++encoding; for (src = sources; src->index != src_n; src = src->next)
continue;
jx++;
}
else
{
line = &src->lines[*encoding]; if (coverage)
{
if (!line->exists)
coverage->lines++;
if (!line->count && block->count)
coverage->lines_executed++;
}
line->exists = ;
line->count += block->count;
}
free (block->u.line.encoding);
block->u.cycle.arc = NULL;
block->u.cycle.ident = ~0U; if (!ix || ix + == fn->num_blocks)
/* Entry or exit block */;
else if (flag_all_blocks)
{
line_t *block_line = line ? line : &fn->src->lines[fn->line]; block->chain = block_line->u.blocks;
block_line->u.blocks = block;
}
else if (flag_branches)
{
arc_t *arc; for (arc = block->succ; arc; arc = arc->succ_next)
{
arc->line_next = line->u.branches;
line->u.branches = arc;
if (coverage && !arc->is_unconditional)
add_branch_counts (coverage, arc);
}
}
}
if (!line)
fnotice (stderr, "%s:no lines for '%s'\n", bbg_file_name, fn->name);
} /* Accumulate the line counts of a file. */ static void
accumulate_line_counts (source_t *src)
{
line_t *line;
function_t *fn, *fn_p, *fn_n;
unsigned ix; /* Reverse the function order. */
for (fn = src->functions, fn_p = NULL; fn;
fn_p = fn, fn = fn_n)
{
fn_n = fn->line_next;
fn->line_next = fn_p;
}
src->functions = fn_p; for (ix = src->num_lines, line = src->lines; ix--; line++)
{
if (!flag_all_blocks)
{
arc_t *arc, *arc_p, *arc_n; /* Total and reverse the branch information. */
for (arc = line->u.branches, arc_p = NULL; arc;
arc_p = arc, arc = arc_n)
{
arc_n = arc->line_next;
arc->line_next = arc_p; add_branch_counts (&src->coverage, arc);
}
line->u.branches = arc_p;
}
else if (line->u.blocks)
{
/* The user expects the line count to be the number of times
a line has been executed. Simply summing the block count
will give an artificially high number. The Right Thing
is to sum the entry counts to the graph of blocks on this
line, then find the elementary cycles of the local graph
and add the transition counts of those cycles. */
block_t *block, *block_p, *block_n;
gcov_type count = ; /* Reverse the block information. */
for (block = line->u.blocks, block_p = NULL; block;
block_p = block, block = block_n)
{
block_n = block->chain;
block->chain = block_p;
block->u.cycle.ident = ix;
}
line->u.blocks = block_p; /* Sum the entry arcs. */
for (block = line->u.blocks; block; block = block->chain)
{
arc_t *arc; for (arc = block->pred; arc; arc = arc->pred_next)
{
if (arc->src->u.cycle.ident != ix)
count += arc->count;
if (flag_branches)
add_branch_counts (&src->coverage, arc);
} /* Initialize the cs_count. */
for (arc = block->succ; arc; arc = arc->succ_next)
arc->cs_count = arc->count;
} /* Find the loops. This uses the algorithm described in
Tiernan 'An Efficient Search Algorithm to Find the
Elementary Circuits of a Graph', CACM Dec 1970. We hold
the P array by having each block point to the arc that
connects to the previous block. The H array is implicitly
held because of the arc ordering, and the block's
previous arc pointer. Although the algorithm is O(N^3) for highly connected
graphs, at worst we'll have O(N^2), as most blocks have
only one or two exits. Most graphs will be small. For each loop we find, locate the arc with the smallest
transition count, and add that to the cumulative
count. Decrease flow over the cycle and remove the arc
from consideration. */
for (block = line->u.blocks; block; block = block->chain)
{
block_t *head = block;
arc_t *arc; next_vertex:;
arc = head->succ;
current_vertex:;
while (arc)
{
block_t *dst = arc->dst;
if (/* Already used that arc. */
arc->cycle
/* Not to same graph, or before first vertex. */
|| dst->u.cycle.ident != ix
/* Already in path. */
|| dst->u.cycle.arc)
{
arc = arc->succ_next;
continue;
} if (dst == block)
{
/* Found a closing arc. */
gcov_type cycle_count = arc->cs_count;
arc_t *cycle_arc = arc;
arc_t *probe_arc; /* Locate the smallest arc count of the loop. */
for (dst = head; (probe_arc = dst->u.cycle.arc);
dst = probe_arc->src)
if (cycle_count > probe_arc->cs_count)
{
cycle_count = probe_arc->cs_count;
cycle_arc = probe_arc;
} count += cycle_count;
cycle_arc->cycle = ; /* Remove the flow from the cycle. */
arc->cs_count -= cycle_count;
for (dst = head; (probe_arc = dst->u.cycle.arc);
dst = probe_arc->src)
probe_arc->cs_count -= cycle_count; /* Unwind to the cyclic arc. */
while (head != cycle_arc->src)
{
arc = head->u.cycle.arc;
head->u.cycle.arc = NULL;
head = arc->src;
}
/* Move on. */
arc = arc->succ_next;
continue;
} /* Add new block to chain. */
dst->u.cycle.arc = arc;
head = dst;
goto next_vertex;
}
/* We could not add another vertex to the path. Remove
the last vertex from the list. */
arc = head->u.cycle.arc;
if (arc)
{
/* It was not the first vertex. Move onto next arc. */
head->u.cycle.arc = NULL;
head = arc->src;
arc = arc->succ_next;
goto current_vertex;
}
/* Mark this block as unusable. */
block->u.cycle.ident = ~0U;
} line->count = count;
} if (line->exists)
{
src->coverage.lines++;
if (line->count)
src->coverage.lines_executed++;
}
}
} /* Output information about ARC number IX. Returns nonzero if
anything is output. */ static int
output_branch_count (FILE *gcov_file, int ix, const arc_t *arc)
{ if (arc->is_call_non_return)
{
if (arc->src->count)
{
fnotice (gcov_file, "call %2d returned %s\n", ix,
format_gcov (arc->src->count - arc->count,
arc->src->count, -flag_counts));
}
else
fnotice (gcov_file, "call %2d never executed\n", ix);
}
else if (!arc->is_unconditional)
{
if (arc->src->count)
fnotice (gcov_file, "branch %2d taken %s%s\n", ix,
format_gcov (arc->count, arc->src->count, -flag_counts),
arc->fall_through ? " (fallthrough)" : "");
else
fnotice (gcov_file, "branch %2d never executed\n", ix);
}
else if (flag_unconditional && !arc->dst->is_call_return)
{
if (arc->src->count)
fnotice (gcov_file, "unconditional %2d taken %s\n", ix,
format_gcov (arc->count, arc->src->count, -flag_counts));
else
fnotice (gcov_file, "unconditional %2d never executed\n", ix);
}
else
return ;
return ; } /* Read in the source file one line at a time, and output that line to
the gcov file preceded by its execution count and other
information. */ static void
output_lines (FILE *gcov_file, const source_t *src)
{
FILE *source_file;
unsigned line_num; /* current line number. */
const line_t *line; /* current line info ptr. */
char string[STRING_SIZE]; /* line buffer. */
char const *retval = ""; /* status of source file reading. */
function_t *fn = NULL; fprintf (gcov_file, "%9s:%5d:Source:%s\n", "-", , src->name);
fprintf (gcov_file, "%9s:%5d:Graph:%s\n", "-", , bbg_file_name);
fprintf (gcov_file, "%9s:%5d:Data:%s\n", "-", , da_file_name);
fprintf (gcov_file, "%9s:%5d:Runs:%u\n", "-", ,
object_summary.ctrs[GCOV_COUNTER_ARCS].runs);
fprintf (gcov_file, "%9s:%5d:Programs:%u\n", "-", , program_count); source_file = fopen (src->name, "r");
if (!source_file)
{
fnotice (stderr, "%s:cannot open source file\n", src->name);
retval = NULL;
}
else
{
struct stat status; if (!fstat (fileno (source_file), &status)
&& status.st_mtime > bbg_file_time)
{
fnotice (stderr, "%s:source file is newer than graph file '%s'\n",
src->name, bbg_file_name);
fprintf (gcov_file, "%9s:%5d:Source is newer than graph\n",
"-", );
}
} if (flag_branches)
fn = src->functions; for (line_num = , line = &src->lines[line_num];
line_num < src->num_lines; line_num++, line++)
{
for (; fn && fn->line == line_num; fn = fn->line_next)
{
arc_t *arc = fn->blocks[fn->num_blocks - ].pred;
gcov_type return_count = fn->blocks[fn->num_blocks - ].count; for (; arc; arc = arc->pred_next)
if (arc->fake)
return_count -= arc->count; fprintf (gcov_file, "function %s", fn->name);
fprintf (gcov_file, " called %s",
format_gcov (fn->blocks[].count, , -));
fprintf (gcov_file, " returned %s",
format_gcov (return_count, fn->blocks[].count, ));
fprintf (gcov_file, " blocks executed %s",
format_gcov (fn->blocks_executed, fn->num_blocks - , ));
fprintf (gcov_file, "\n");
} /* For lines which don't exist in the .bb file, print '-' before
the source line. For lines which exist but were never
executed, print '#####' before the source line. Otherwise,
print the execution count before the source line. There are
16 spaces of indentation added before the source line so that
tabs won't be messed up. */
fprintf (gcov_file, "%9s:%5u:",
!line->exists ? "-" : !line->count ? "#####"
: format_gcov (line->count, , -), line_num); if (retval)
{
/* Copy source line. */
do
{
retval = fgets (string, STRING_SIZE, source_file);
if (!retval)
break;
fputs (retval, gcov_file);
}
while (!retval[] || retval[strlen (retval) - ] != '\n');
}
if (!retval)
fputs ("/*EOF*/\n", gcov_file); if (flag_all_blocks)
{
block_t *block;
arc_t *arc;
int ix, jx; for (ix = jx = , block = line->u.blocks; block;
block = block->chain)
{
if (!block->is_call_return)
fprintf (gcov_file, "%9s:%5u-block %2d\n",
!line->exists ? "-" : !block->count ? "$$$$$"
: format_gcov (block->count, , -),
line_num, ix++);
if (flag_branches)
for (arc = block->succ; arc; arc = arc->succ_next)
jx += output_branch_count (gcov_file, jx, arc);
}
}
else if (flag_branches)
{
int ix;
arc_t *arc; for (ix = , arc = line->u.branches; arc; arc = arc->line_next)
ix += output_branch_count (gcov_file, ix, arc);
}
} /* Handle all remaining source lines. There may be lines after the
last line of code. */
if (retval)
{
for (; (retval = fgets (string, STRING_SIZE, source_file)); line_num++)
{
fprintf (gcov_file, "%9s:%5u:%s", "-", line_num, retval); while (!retval[] || retval[strlen (retval) - ] != '\n')
{
retval = fgets (string, STRING_SIZE, source_file);
if (!retval)
break;
fputs (retval, gcov_file);
}
}
} if (source_file)
fclose (source_file);
}

gcov源码,供学习使用。的更多相关文章

  1. java 并发编程——Thread 源码重新学习

    Java 并发编程系列文章 Java 并发基础——线程安全性 Java 并发编程——Callable+Future+FutureTask java 并发编程——Thread 源码重新学习 java并发 ...

  2. vnpy源码阅读学习(1):准备工作

    vnpy源码阅读学习 目标 通过阅读vnpy,学习量化交易系统的一些设计思路和理念. 通过阅读vnpy学习python项目开发的一些技巧和范式 通过vnpy的设计,可以用python复现一个小型简单的 ...

  3. Java小白集合源码的学习系列:LinkedList

    目录 LinkedList 源码学习 LinkedList继承体系 LinkedList核心源码 Deque相关操作 总结 LinkedList 源码学习 前文传送门:Java小白集合源码的学习系列: ...

  4. Java小白集合源码的学习系列:Vector

    目录 Vector源码学习 Vector继承体系 Vector核心源码 基本属性 构造器 扩容机制 Enumeration 概述 源码描述 具体操作 Vector总结 Vector源码学习 前文传送门 ...

  5. 我们一起学习WCF 第一篇初识WCF(附源码供对照学习)

    前言:去年由于工作需要我学习了wcf的相关知识,初期对wcf的作用以及为何用怎么样都是一知半解,也许现在也不是非常的清晰.但是通过项目对wcf的运用在脑海里面也算有了初步的模型.今天我就把我从开始wc ...

  6. Android开发者学习必备:10个优质的源码供大家学习

    最近看了一些开发的东西,汇总了一些源码.希望可以给大家有些帮助! 1.Android 源码解析—PagerSlidingTabStrippagerSlidingTabStrip 实现联动效果的原理是, ...

  7. 如何从源码中学习javascript

    艾伦说啊,学习javascript,必须要学会看源码,通过高手的源码,你可以从中吸取很多书本上难以看到的技巧. 看源码就好像喝鸡汤,所有的营养都在这汤里了.这汤就是源码,高手写的源码,就是最好的鸡汤. ...

  8. 【NopCommerce源码架构学习-一】--初识高性能的开源商城系统cms

    很多人都说通过阅读.学习大神们高质量的代码是提高自己技术能力最快的方式之一.我觉得通过阅读NopCommerce的源码,可以从中学习很多企业系统.软件开发的规范和一些新的技术.技巧,可以快速地提高我们 ...

  9. 正式开始jQuery源码的学习

    查了一些资料,2.0.3版本的jq源码分析的资料比较多,就以这个版本研究学习了. 今天正式开始.

  10. java集合 源码解析 学习手册

    学习路线: http://www.cnblogs.com/skywang12345/ 总结 1 总体框架 2 Collection架构 3 ArrayList详细介绍(源码解析)和使用示例 4 fai ...

随机推荐

  1. 转--Invalidate和postInvalidate的更新view区别

    Android中实现view的更新有两组方法,一组是invalidate,另一组是postInvalidate,其中前者是在UI线程自身中使用,而后者在非UI线程中使用. Android提供了Inva ...

  2. 转载__Java内部类

    内部类是指在一个外部类的内部再定义一个类.内部类作为外部类的一个成员,并且依附于外部类而存在的.内部类可为静态,可用protected和private修饰(而外部类只能使用public和缺省的包访问权 ...

  3. 无状态服务(stateless service)

    一.定义 无状态服务(stateless service)对单次请求的处理,不依赖其他请求,也就是说,处理一次请求所需的全部信息,要么都包含在这个请求里,要么可以从外部获取到(比如说数据库),服务器本 ...

  4. OC字符串常用函数

    创建一个字符串对象: NSstring * str1 = @"hello"; NSString * str = [[NSString alloc]initWithString:@& ...

  5. webim-界面细节调整

    1)左侧css调整 3)界面和滚动条美化 8)界面

  6. Citrix 服务器虚拟化之八 Xenserver虚拟机模版

    Citrix 服务器虚拟化之八 Xenserver虚拟机模版 XenServer与VMware不同,Vmware只能将现有的VM转换成模版,而XenServer具有两种方法:一种是将现有 VM 转换为 ...

  7. 安装程序无法复制文件 convlog.exe的解决方法

    在安装的时候出现一个错误提示“安装程序无法复制文件CONVLOG.EX_”,上网找了很多资料,都说是因为版本问题,考虑到自己的服务器安装的是2003 SP1,后来打了补丁到SP2的,也就认为是版本问题 ...

  8. Dephi的同一个线程支持累次Execute吗

    Suspend放到循环里------解决方案--------------------执行完不结束只休眠.另外还需要线程池.------解决方案--------------------    while ...

  9. python metaclass 入门简介

    http://cizixs.com/2015/08/30/metaclass-in-python 动态类型也是类型 python 是一种动态类型语言,换句话说每个变量可以在程序里任何地方改变它的类型. ...

  10. nyoj 108 士兵杀敌(一)

    点击打开链接 士兵杀敌(一) 时间限制:1000 ms  |  内存限制:65535 KB 难度:3 描述 南将军手下有N个士兵,分别编号1到N,这些士兵的杀敌数都是已知的. 小工是南将军手下的军师, ...