声明: 网上摘抄

False discovery rate (FDR) control is a statistical method used in multiple hypothesis testing to correct for multiple comparisons. In a list of rejected hypotheses, FDR controls the expected proportion of incorrectly rejected null hypotheses (type I errors). It is a less conservative procedure for comparison, with greater power than familywise error rate (FWER) control, at a cost of increasing the likelihood of obtaining type I errors.

The q value is defined to be the FDR analogue of the p-value. The q-value of an individual hypothesis test is the minimum FDR at which the test may be called significant. One approach is to directly estimate q-values rather than fixing a level at which to control the FDR.

原来q-value是在计算FDR时候使用的,跟P value类似。下面的基本没看懂

Classification of m hypothesis tests

The following table defines some random variables related to the m hypothesis tests.

  # declared non-significant # declared significant Total
# true null hypotheses U V m0
# non-true null hypotheses T S m ? m0
Total m ? R R m

The false discovery rate is given by and one wants to keep this value below a threshold α.

( is defined to be 0 when R = 0)

Controlling procedures

Independent tests

The Simes procedure ensures that its expected value is less than a given α (Benjamini and Hochberg 1995). This procedure is valid when the m tests are independent. Let be the null hypotheses and their corresponding p-values. Order these values in increasing order and denote them by . For a given α, find the largest k such that

Then reject (i.e. declare positive) all H(i) for .

...Note, the mean α for these m tests is which could be used as a rough FDR (RFDR) or "α adjusted for m indep. tests."

NOTE: The RFDR calculation shown here is not part of the Benjamini and Hochberg method.

Dependent tests

The Benjamini and Yekutieli procedure controls the false discovery rate under dependence assumptions. This refinement modifies the threshold and finds the largest k such that:

  • If the tests are independent: c(m) = 1 (same as above)
  • If the tests are positively correlated: c(m) = 1
  • If the tests are negatively correlated:

In the case of negative correlation, c(m) can be approximated by using the Euler-Mascheroni constant

Using RFDR above, an approximate FDR (AFDR) is the min(mean α) for m dependent tests = RFDR / ( ln(m)+ 0.57721...).

FDR的更多相关文章

  1. matlab FDR校正

    http://home.52brain.com/forum.php?mod=viewthread&tid=27066&page=1#pid170857 http://www.mathw ...

  2. SPM FDR校正

    来源: http://blog.sciencenet.cn/blog-479412-572049.html,http://52brain.com/thread-15512-1-1.html SPM8允 ...

  3. 假设检验:p-value,FDR,q-value

    来源:http://blog.sina.com.cn/s/blog_6b1c9ed50101l02a.html,http://wenku.baidu.com/link?url=3mRTbARl0uPH ...

  4. regression | p-value | Simple (bivariate) linear model | 线性回归 | 多重检验 | FDR | BH | R代码

    P122, 这是IQR method课的第一次作业,需要统计检验,x和y是否显著的有线性关系. Assignment 1 1) Find a small bivariate dataset (pref ...

  5. 学习笔记50—多重假设检验与Bonferroni校正、FDR校正

    总结起来就三句话: (1)当同一个数据集有n次(n>=2)假设检验时,要做多重假设检验校正 (2)对于Bonferroni校正,是将p-value的cutoff除以n做校正,这样差异基因筛选的p ...

  6. 学习笔记49—matlab FDR校正

    matlab自带函数mafdr,当ttest数较多时,可直接用[FDR, Q]=mafdr(P):但是Storey procedure在p值少于1000个时会崩溃,此时应改用BH FDR方法:mafd ...

  7. p值还是 FDR ?

    p值还是 FDR ? 差异分析 如何筛选显著性差异基因,p value, FDR 如何选 经常有同学询问如何筛选差异的基因(蛋白).已经计算了表达量和p value值,差异的基因(蛋白)太多了,如何筛 ...

  8. 浅谈多重检验校正FDR

    浅谈多重检验校正FDR Posted: 四月 12, 2017  Under: Basic  By Kai  no Comments 例如,在我们对鉴定到的差异蛋白做GO功能注释后,通常会计算一个p值 ...

  9. 差异表达分析之FDR

    差异表达分析之FDR 随着测序成本的不断降低,转录组测序分析已逐渐成为一种很常用的分析手段.但对于转录组分析当中的一些概念,很多人还不是很清楚.今天,小编就来谈谈在转录组分析中,经常会遇到的一个概念F ...

随机推荐

  1. 使用MediaPlayer和SurfaceView播放视频

    使用VideoView播放视频简单.方便,丹有些早期的开发者更喜欢使用MediaPlayer来播放视频,但由于MediaPlayer主要用于播放音频,因此它没有提供图像输出界面,此时 需要借助于Sur ...

  2. 使用SMSManager短信管理器实现短信群发

    import java.util.ArrayList; import android.os.Bundle;import android.provider.ContactsContract;import ...

  3. 铁人系列 (1) uva 10385

    uva  10385 列出n-1个一元方程,对应成单峰函数,所以用三分求解即可. #include <cstdio> #include <cstring> #include & ...

  4. 虚拟机的apache服务器不能被主机访问的问题

    我在centos虚拟机上安装了elasticsearch服务,虚拟机里测试正常,但主机却无法访问elasticsearch.要说的是,虚拟机采用桥接模式,与主机相互ping得通. 后来查了资料发现,这 ...

  5. 3.5电子书pc显示

    使用svgalib 下载地址:https://launchpad.net/ubuntu/+source/svgalib/1:1.4.3-30svgalib_1.4.3.orig.tar.gzsvgal ...

  6. jquery 取的单选按钮组的值

    <input type=”radio” name=”wholesale_one” id=”wholesale_one” value=”1″ />1箱起批<input type=”ra ...

  7. C++-标准输入输出

    1,cout 1) 用来向标准输出打印. 2) 如果参数是char*类型,则直接输出字符串.如果想要输出地址,则需要强制转换: <<static_cast<void*>(con ...

  8. MonoRail MVC应用(2)-构建多层结构的应用程序

    习惯了分层结构的.NET开发了,当然也是分层有优势,所以在使用MonoRail进行网站构建时,首先考虑到的问题就是MonoRail如何应对分层的结构.问题1:MonoRail在WEB层没有根目录,必须 ...

  9. 在网页中编辑报表的报表设计器Stimulsoft Reports Designer.Web报表控件

    Stimulsoft Reports Designer.Web报表控件是一款网页报表设计器.您想在网页中编辑您的报表吗?现在是可能的! Stimulsoft Reports Designer.Web ...

  10. java基础之类与继承 详解

    Java:类与继承 对于面向对象的程序设计语言来说,类毫无疑问是其最重要的基础.抽象.封装.继承.多态这四大特性都离不开类,只有存在类,才能体现面向对象编程的特点,今天我们就来了解一些类与继承的相关知 ...