声明: 网上摘抄

False discovery rate (FDR) control is a statistical method used in multiple hypothesis testing to correct for multiple comparisons. In a list of rejected hypotheses, FDR controls the expected proportion of incorrectly rejected null hypotheses (type I errors). It is a less conservative procedure for comparison, with greater power than familywise error rate (FWER) control, at a cost of increasing the likelihood of obtaining type I errors.

The q value is defined to be the FDR analogue of the p-value. The q-value of an individual hypothesis test is the minimum FDR at which the test may be called significant. One approach is to directly estimate q-values rather than fixing a level at which to control the FDR.

原来q-value是在计算FDR时候使用的,跟P value类似。下面的基本没看懂

Classification of m hypothesis tests

The following table defines some random variables related to the m hypothesis tests.

  # declared non-significant # declared significant Total
# true null hypotheses U V m0
# non-true null hypotheses T S m ? m0
Total m ? R R m

The false discovery rate is given by and one wants to keep this value below a threshold α.

( is defined to be 0 when R = 0)

Controlling procedures

Independent tests

The Simes procedure ensures that its expected value is less than a given α (Benjamini and Hochberg 1995). This procedure is valid when the m tests are independent. Let be the null hypotheses and their corresponding p-values. Order these values in increasing order and denote them by . For a given α, find the largest k such that

Then reject (i.e. declare positive) all H(i) for .

...Note, the mean α for these m tests is which could be used as a rough FDR (RFDR) or "α adjusted for m indep. tests."

NOTE: The RFDR calculation shown here is not part of the Benjamini and Hochberg method.

Dependent tests

The Benjamini and Yekutieli procedure controls the false discovery rate under dependence assumptions. This refinement modifies the threshold and finds the largest k such that:

  • If the tests are independent: c(m) = 1 (same as above)
  • If the tests are positively correlated: c(m) = 1
  • If the tests are negatively correlated:

In the case of negative correlation, c(m) can be approximated by using the Euler-Mascheroni constant

Using RFDR above, an approximate FDR (AFDR) is the min(mean α) for m dependent tests = RFDR / ( ln(m)+ 0.57721...).

FDR的更多相关文章

  1. matlab FDR校正

    http://home.52brain.com/forum.php?mod=viewthread&tid=27066&page=1#pid170857 http://www.mathw ...

  2. SPM FDR校正

    来源: http://blog.sciencenet.cn/blog-479412-572049.html,http://52brain.com/thread-15512-1-1.html SPM8允 ...

  3. 假设检验:p-value,FDR,q-value

    来源:http://blog.sina.com.cn/s/blog_6b1c9ed50101l02a.html,http://wenku.baidu.com/link?url=3mRTbARl0uPH ...

  4. regression | p-value | Simple (bivariate) linear model | 线性回归 | 多重检验 | FDR | BH | R代码

    P122, 这是IQR method课的第一次作业,需要统计检验,x和y是否显著的有线性关系. Assignment 1 1) Find a small bivariate dataset (pref ...

  5. 学习笔记50—多重假设检验与Bonferroni校正、FDR校正

    总结起来就三句话: (1)当同一个数据集有n次(n>=2)假设检验时,要做多重假设检验校正 (2)对于Bonferroni校正,是将p-value的cutoff除以n做校正,这样差异基因筛选的p ...

  6. 学习笔记49—matlab FDR校正

    matlab自带函数mafdr,当ttest数较多时,可直接用[FDR, Q]=mafdr(P):但是Storey procedure在p值少于1000个时会崩溃,此时应改用BH FDR方法:mafd ...

  7. p值还是 FDR ?

    p值还是 FDR ? 差异分析 如何筛选显著性差异基因,p value, FDR 如何选 经常有同学询问如何筛选差异的基因(蛋白).已经计算了表达量和p value值,差异的基因(蛋白)太多了,如何筛 ...

  8. 浅谈多重检验校正FDR

    浅谈多重检验校正FDR Posted: 四月 12, 2017  Under: Basic  By Kai  no Comments 例如,在我们对鉴定到的差异蛋白做GO功能注释后,通常会计算一个p值 ...

  9. 差异表达分析之FDR

    差异表达分析之FDR 随着测序成本的不断降低,转录组测序分析已逐渐成为一种很常用的分析手段.但对于转录组分析当中的一些概念,很多人还不是很清楚.今天,小编就来谈谈在转录组分析中,经常会遇到的一个概念F ...

随机推荐

  1. Matcher类:(转)

    Matcher类:     使用Matcher类,最重要的一个概念必须清楚:组(Group),在正则表达式中 ()定义了一个组,由于一个正则表达式可以包含很多的组,所以下面先说说怎么划分组的, 以及这 ...

  2. word 转 PDF时报错

    利用微软自带的com组件,把word转化成Pdf,利用vs2012调试时没有问题,但是发布到IIS时出错,错误为: 检索 COM 类工厂中 CLSID 为 {} 的组件时失败,原因是出现以下错误: 8 ...

  3. "QQ尾巴病毒"核心技术的实现原理分析

    声明:本文旨在探讨技术,请读者不要使用文章中的方法进行任何破坏. 2003这一年里,QQ尾巴病毒可以算是风光了一阵子.它利用IE的邮件头漏洞在QQ上疯狂传播.中毒者在给别人发信息时,病毒会自动在信息文 ...

  4. hdu 4627 The Unsolvable Problem

    http://acm.hdu.edu.cn/showproblem.php?pid=4627 分类讨论一下就可以 代码: #include<iostream> #include<cs ...

  5. js获取URL地址中的GET参数

    var $_GET = (function(){ var url = window.document.location.href.toString(); var u = url.split(" ...

  6. wScratchPad 实现刮刮卡效果

    插件网址http://wscratchpad.websanova.com/

  7. Flux Demo解析

    最近学习了阮一峰老师的博文 "Flux入门教程",博文中详细介绍了Flux框架和Controller view模式,并提供了Demo,受益匪浅. 现特参考阮老师的Demo,绘制了一 ...

  8. C/C++遍历Windows文件夹下的所有文件

    因为文件夹中往往包含文件和文件夹.想要遍历所有的文件,必须遍历文件夹中所有的文件夹.很显然,这个描述满足递归的两个要素:(1)问题的规模在不断的缩小,且新问题的模式与旧问题相同.很显然文件夹中含有子文 ...

  9. Spark的编译

    由于Spark的运行环境的多样性,如可以运行在hadoop的yarn上,这样就必须要对Spark的源码进行编译.下面介绍一下Spark源码编译的详细步骤: 1.Spark的编译方式:编译的方式可以参考 ...

  10. Oge中Mesh的渲染流程详述

    转自:http://blog.csdn.net/yanonsoftware/article/details/1041396 首先一个Entity对象必须Attach到一个SceneNode. 1.创建 ...