跟1244差不多。

//由于(x+1)没有先mod一下一直WA三个点我。。。

//由于(x+1)没有先mod一下一直WA三个点我。。。
#include<cstdio>
#include<cstring>
#include<cctype>
#include<algorithm>
using namespace std;
#define rep(i,s,t) for(ll i=s;i<=t;i++)
#define dwn(i,s,t) for(ll i=s;i>=t;i--)
#define clr(x,c) memset(x,c,sizeof(x))
#define qwq(x) for(edge *o=head[x];o;o=o->next)
#define ll long long
const ll md=1e6+7;
const ll mod=1e9+7;
const int nmax=6e6+5;
struct edge{
ll to,dis;edge *next;
};
edge es[md<<1],*pt=es,*head[md];
ll pi[nmax+1];int pe[nmax+1];bool vis[nmax+1];
void add(ll u,ll v,ll d){
pt->to=v;pt->dis=d;pt->next=head[u];head[u]=pt++;
}
const ll zs=500000004;
ll get(ll x){
if(x<=nmax) return pi[x];
ll tp=x%md;qwq(tp) if(o->to==x) return o->dis;
ll ans=0,last;
for(ll i=2;i<=x;i=last+1){
last=x/(x/i);
ans=(ans+(last-i+1)%mod*get(x/i)%mod)%mod;
}
ll orz=(x%mod*((x+1)%mod)%mod*zs%mod-ans+mod)%mod;
add(tp,x,orz);
return orz;
}
int main(){
pi[1]=1;int cnt=0,tp;
rep(i,2,nmax){
if(!vis[i]) pe[++cnt]=i,pi[i]=i-1;
rep(j,1,cnt){
tp=pe[j];if(i*tp>nmax) break;vis[i*tp]=1;
if(i%tp==0){
pi[i*tp]=pi[i]*tp;break;
} pi[i*tp]=pi[i]*pi[tp];
}
}
rep(i,2,nmax) pi[i]=(pi[i]+pi[i-1])%mod;
ll n;scanf("%lld",&n);
printf("%lld\n",get(n));
return 0;
}

  

基准时间限制:3 秒 空间限制:131072 KB 分值: 320 难度:7级算法题
 收藏
 关注
对正整数n,欧拉函数是小于或等于n的数中与n互质的数的数目。此函数以其首名研究者欧拉命名,它又称为Euler's totient function、φ函数、欧拉商数等。例如:φ(8) = 4(Phi(8) = 4),因为1,3,5,7均和8互质。

 
S(n) = Phi(1) + Phi(2) + ...... Phi(n),给出n,求S(n),例如:n = 5,S(n) = 1 + 1 + 2 + 2 + 4 = 10,定义Phi(1) = 1。由于结果很大,输出Mod 1000000007的结果。
Input
输入一个数N。(2 <= N <= 10^10)
Output
输出S(n) Mod 1000000007的结果。
Input示例
5
Output示例
10
相关问题
欧拉函数

0

51nod1239 欧拉函数之和的更多相关文章

  1. [51nod1239欧拉函数之和]

    来自FallDream的博客,未经允许,请勿转载,谢谢 --------------------------------------------- 给定n,求$S(n)=\sum_{i=1}^{n}\ ...

  2. 杜教筛--51nod1239 欧拉函数之和

    求$\sum_{i=1}^{n}\varphi (i)$,$n\leqslant 1e10$. 这里先把杜教筛的一般套路贴一下: 要求$S(n)=\sum_{i=1}^{n}f(i)$,而现在有一数论 ...

  3. [51nod1239] 欧拉函数之和(杜教筛)

    题面 传送门 题解 话说--就一个杜教筛--刚才那道拿过来改几行就行了-- //minamoto #include<bits/stdc++.h> #define R register #d ...

  4. 51 NOD 1239 欧拉函数之和(杜教筛)

    1239 欧拉函数之和 基准时间限制:3 秒 空间限制:131072 KB 分值: 320 难度:7级算法题 收藏 关注 对正整数n,欧拉函数是小于或等于n的数中与n互质的数的数目.此函数以其首名研究 ...

  5. [51Nod 1244] - 莫比乌斯函数之和 & [51Nod 1239] - 欧拉函数之和 (杜教筛板题)

    [51Nod 1244] - 莫比乌斯函数之和 求∑i=1Nμ(i)\sum_{i=1}^Nμ(i)∑i=1N​μ(i) 开推 ∑d∣nμ(d)=[n==1]\sum_{d|n}\mu(d)=[n== ...

  6. 【51nod-1239&1244】欧拉函数之和&莫比乌斯函数之和 杜教筛

    题目链接: 1239:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1239 1244:http://www.51nod. ...

  7. 51nod 1239 欧拉函数之和(杜教筛)

    [题目链接] https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1239 [题目大意] 计算欧拉函数的前缀和 [题解] 我们 ...

  8. 欧拉函数之和(51nod 1239)

    对正整数n,欧拉函数是小于或等于n的数中与n互质的数的数目.此函数以其首名研究者欧拉命名,它又称为Euler's totient function.φ函数.欧拉商数等.例如:φ(8) = 4(Phi( ...

  9. 【51Nod 1239】欧拉函数之和

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1239 还是模板题. 杜教筛:\[S(n)=\frac{n(n+1)}{2 ...

随机推荐

  1. ASP.NET MVC 从IHttp到页面输出

    MVCHandler应该算是MVC真正开始的地方.MVCHandler实现了IHttpHandler接口,ProcessRequest便是方法入口. MVCHandler : IHttpHandler ...

  2. MariaDB Galera Cluster 部署(如何快速部署 MariaDB 集群)

    MariaDB Galera Cluster 部署(如何快速部署 MariaDB 集群)  OneAPM蓝海讯通7月3日 发布 推荐 4 推荐 收藏 14 收藏,1.1k 浏览 MariaDB 作为 ...

  3. POJ 2004 Mix and Build (预处理+dfs)

    题意: 给N个字符串,要求出一个序列,在该序列中,后一个串,是由前一个串加一个字母后得来的(顺序可以改动). 问最多能组成多长的序列.思路:将给的字符串排序,再对所有的字符串按长度从小到大排序,若长度 ...

  4. win7建wifi 热点,附wifi小工具

    首先申明:1)以下操作均在管理员身份下操作,其他用户下请亲测.                2)具备无线网卡,并且已经安装好了驱动. 1.打开命令行:输入netsh wlan set hostedn ...

  5. HDU 1978 How many ways(动态规划)

    How many ways http://acm.hdu.edu.cn/showproblem.php?pid=1978 Problem Description 这是一个简单的生存游戏,你控制一个机器 ...

  6. (6)妈的终于找到能用的nehe sdk了

    在网上下载了有十多个,终于找到一个能用的了 下面是下载地址: http://download.csdn.net/detail/jason_bourn/681620#comment 泪奔啊~

  7. lintcode:Wiggle Sort

    Wiggle Sort Given an unsorted array nums, reorder it in-place such that nums[0] <= nums[1] >= ...

  8. 545C. Woodcutters

    题目链接 题意: n个树,在x1,x2,...,xn的位置,树的高度依次是h1,h2,...,hn 求的是当把树砍倒时候,不占用相邻树的位置,最大砍树个数 可向左 向右砍,即树向左向右倒,很显然 当树 ...

  9. AngularJS学习笔记1——什么是AngularJS?

    Angular JS是一个由Google维护的开源的Javascript框架,主要作者为: Misko Hevery(angular JS之父, Sr. Computer Scientist at G ...

  10. Spring框架学习之第7节

    配置Bean的细节 ☞尽量使用scope=”singleton”,不要使用prototype,因为这样对我们的性能影响较大 ②如何给集合类型注入值 Java中主要的map,set,list / 数组 ...