POJ 3696 The Luckiest number (欧拉函数,好题)
该题没思路,参考了网上各种题解。。。。
注意到凡是那种11111..... 22222..... 33333.....之类的序列都可用这个式子来表示:k*(10^x-1)/9
进而简化:8 * (10^x-1)/9=L * k (k是一个整数)
8*(10^x-1)=9L*k
d=gcd(9L,8)=gcd(8,L)
8*(10^x-1)/d=9L/d*k
令p=8/d q=9L/d p*(10^x-1)=q*k
因为p,q互质,所以q|(10^x-1),即10^x-1=0(mod q),也就是10^x=1(mod 9*L/d)
由欧拉定理可知,当q与10互质的时候,10^(φ(q))=1 (mod q),即必定存在一个解x。
而题目中要求的是最小的解,设为min,那么有a^min=1%q,因为要满足a^φ(q)=1%q,那么a^φ(q)肯定能变换成(a^min)^i。
所以接下来只要枚举φ(q)的因子,找出符合条件的最小者即可。
无解的时候就是q与10不互质的时候,因为若q与10有公因子d:
1.若d=2,q=2*k,那么10^x=2^x*5^x=1%2k
即2^x*5^x=1+2k*m,左边为偶数,右边为奇数,显然矛盾。
2.若d=5,q=5*k,那么10^x=2^x*5^x=1%5k
即2^x*5^x=1+5k*m,左边是5的倍数,右边不是5的倍数,显然矛盾。
#include <iostream>
#include <string.h>
#include <algorithm>
#include <stdio.h>
#include <math.h> using namespace std;
long long L; long long gcd(long long a,long long b) {
return b==?a:gcd(b,a%b);
}
long long multi(long long a,long long b,long long mod) {
long long ret=;
while(b) {
if(b&)
ret=(ret+a)%mod;
a=(a<<)%mod;
b=b>>;
}
return ret;
}
long long quickPow(long long a,long long b,long long mod) {
long long ret=;
while(b) {
if(b&)
ret=multi(ret,a,mod); //直接相乘的话可能会溢出
a=multi(a,a,mod);
b=b>>;
}
return ret;
}
//求欧拉函数
long long eular(long long n) {
long long ret=,i;
for(i=; i*i<=n; i++) {
if(n%i==) {
n=n/i;
ret*=i-;
while(n%i==) {
n=n/i;
ret*=i;
}
}
}
if(n>)
ret*=n-;
return ret;
} int main() {
int t=;
while(scanf("%I64d",&L)!=EOF) {
if(L==)
break;
long long p=*L/gcd(L,);
long long d=gcd(,p);
if(d==) {
long long phi=eular(p);
long long ans=phi;
long long m=sqrt((double)phi);
bool flag=false;
//先枚举大小在1~sqrt(phi)之间的因子
for(int i=; i<=m; i++) {
if(phi%i== && quickPow(,i,p)==) {
ans=i;
flag=true;
break;
}
}
//若1~sqrt(phi)没找到符合的因子,那么枚举sqrt(phi)~phi之间的因子
if(!flag) {
for(int i=m; i>=; i--) {
if(phi%i== && quickPow(,phi/i,p)==) {
ans=phi/i;
break;
}
}
}
printf("Case %d: %I64d\n",++t,ans);
} else {
printf("Case %d: 0\n",++t);
}
}
return ;
}
POJ 3696 The Luckiest number (欧拉函数,好题)的更多相关文章
- poj 3696 The Luckiest number 欧拉函数在解a^x=1modm的应用
题意: 给一个L,求长度最小的全8数满足该数是L的倍数. 分析: 转化为求方程a^x==1modm. 之后就是各种数学论证了. 代码: //poj 3696 //sep9 #include <i ...
- POJ3696:The Luckiest number(欧拉函数||求某数最小的满足题意的因子)
Chinese people think of '8' as the lucky digit. Bob also likes digit '8'. Moreover, Bob has his own ...
- POJ 2407 Relatives(欧拉函数入门题)
Relatives Given n, a positive integer, how many positive integers less than n are relatively prime t ...
- POJ 2407:Relatives(欧拉函数模板)
Relatives AC代码 Relatives Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 16186 Accept ...
- hdu 1286 找新朋友 欧拉函数模版题
找新朋友 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Problem Des ...
- (hdu step 7.2.1)The Euler function(欧拉函数模板题——求phi[a]到phi[b]的和)
题目: The Euler function Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Othe ...
- UVA 10820 欧拉函数模板题
这道题就是一道简单的欧拉函数模板题,需要注意的是,当(1,1)时只有一个,其他的都有一对.应该对欧拉函数做预处理,显然不会超时. #include<iostream> #include&l ...
- poj2407(欧拉函数模板题)
题目链接:https://vjudge.net/problem/POJ-2407 题意:给出n,求0..n-1中与n互质的数的个数. 思路:欧拉函数板子题,先根据唯一分解定理求出n的所有质因数p1,p ...
- POJ 2478 Farey Sequence(欧拉函数前n项和)
A - Farey Sequence Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u ...
随机推荐
- PagerAdapter的notifyDataSetChanged无效解决方法
在Adapter中复写该方法: @Override public int getItemPosition(Object object) { return POSITION_NONE; } 即可~~
- uva 11186 Circum Triangle<叉积>
链接: http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&a ...
- Resource is out of sync with the file system
Resource is out of sync with the file system解决办法: 在eclipse或mycelipse中,启动run on server时或查看项目文件时报错:Res ...
- 使用Handler和Timer+Timertask实现简单的图片轮播
布局文件就只放了一个简单的ImageView,就不展示了. 下面是Activity package com.example.administrator.handlerthreadmessagedemo ...
- sk_buff
在2.6.24之后这个结构体有了较大的变化,此处先说一说2.6.16版本的sk_buff,以及解释一些问题. 一. 先直观的看一下这个结构体~~~~~~~~~~~~~~~~~~~~~~在下面解释每个字 ...
- Swift的一些基础内容
//①判断字符串是否为空的方法 isEmpty var str:String = "www.baidu.com" if str.isEmpty { print("空字符串 ...
- Mac OSX 快捷键&命令行总览
大家初用Mac OSX可能不习惯,特别收集总结了Mac OSX 上的快捷键,方便大家参考 ,请叫我雷锋. 一.Mac OSX 快捷键 ctrl+shift ...
- 【分享】生成Revit扩展的addin文件小工具
在进行Revit二次开发的时候,加载命令/程序使用的是添加addin文件的方式,每次都需要手动的写,而且参数有好多,很不方便.于是乎我有了写一个小工具的想法.进过研究终于完成了.主要使用RevitAd ...
- bootstrap bootstrapTable 隐藏列
主要代码: <script type="text/javascript"> $(function () { LoadingDataListOrderRealItems( ...
- 主要从架构上来做优化,负载均衡、CDN、静态化、数据库的水平切割和纵向切割、读写分离、分布式缓存着手
语言知识一种工具,甚至技术本身也只是一种工具,本身并不值钱,关键在于用于何种行业,产生了什么价值. 但从语言来看,我个人更喜欢php,然后是C#,然后是java从框架而言,先是java,然后C#,再次 ...