转自: http://www.careercup.com/question?id=6287528252407808

问题描述:

A k-palindrome is a string which transforms into a palindrome on removing at most k characters.
Given a string S, and an interger K, print "YES" if S is a k-palindrome; otherwise print "NO".
Constraints:
S has at most 20,000 characters.
0<=k<=30
Sample Test Case#1:
Input - abxa 1
Output - YES
Sample Test Case#2:
Input - abdxa 1
Output – No

解答:懒得写了,下面这段通俗易懂,就先将就着看吧

The question asks if we can transform the given string S into its reverse deleting at most K letters.
We could modify the traditional Edit-Distance algorithm, considering only deletions, and check if this edit distance is <= K. There is a problem though. S can have length = 20,000 and the Edit-Distance algorithm takes O(N^2). Which is too slow.
(From here on, I'll assume you're familiar with the Edit-Distance algorithm and its DP matrix)
However, we can take advantage of K. We are only interested *if* manage to delete K letters. This means that any position more than K positions away from the main diagonal is useless because its edit distance must exceed those K deletions.
Since we are comparing the string with its reverse, we will do at most K deletions and K insertions (to make them equal). Thus, we need to check if the ModifiedEditDistance is <= 2*K
Here's the code:

   1:  int ModifiedEditDistance(const string& a, const string& b, int k) {
   2:      int i, j, n = a.size();
   3:      // for simplicity. we should use only a window of size 2*k+1 or 
   4:      // dp[2][MAX] and alternate rows. only need row i-1
   5:      int dp[MAX][MAX];
   6:      memset(dp, 0x3f, sizeof dp);    // init dp matrix to a value > 1.000.000.000
   7:      for (i = 0 ; i < n; i++)
   8:          dp[i][0] = dp[0][i] = i;
   9:   
  10:      for (i = 1; i <= n; i++) {
  11:          int from = max(1, i-k), to = min(i+k, n);
  12:          for (j = from; j <= to; j++) {
  13:              if (a[i-1] == b[j-1])            // same character
  14:                  dp[i][j] = dp[i-1][j-1];    
  15:              // note that we don't allow letter substitutions
  16:              
  17:              dp[i][j] = min(dp[i][j], 1 + dp[i][j-1]); // delete character j
  18:              dp[i][j] = min(dp[i][j], 1 + dp[i-1][j]); // insert character i
  19:          }
  20:      }
  21:      return dp[n][n];
  22:  }
  23:  cout << ModifiedEditDistance("abxa", "axba", 1) << endl;  // 2 <= 2*1 - YES
  24:  cout << ModifiedEditDistance("abdxa", "axdba", 1) << endl; // 4 > 2*1 - NO
  25:  cout << ModifiedEditDistance("abaxbabax", "xababxaba", 2) << endl; // 4 <= 2*2 - YES

We only process 2*K+1 columns per row. So this algorithm works in O(N*K) which is fast enough.

判断一个字符串在至多删除k个字符后是否为回文串的更多相关文章

  1. js判断一个字符串中出现次数最多的字符及次数

    最近面试总是刷到这个题,然后第一次的话思路很乱,这个是我个人思路 for循环里两个 if 判断还可以优化 var maxLength = 0; var maxStr = ''; var count = ...

  2. 删除部分字符使其变成回文串问题——最长公共子序列(LCS)问题

    先要搞明白:最长公共子串和最长公共子序列的区别.    最长公共子串(Longest Common Substirng):连续 最长公共子序列(Longest Common Subsequence,L ...

  3. mysql判断一个字符串是否包含某几个字符

    使用locate(substr,str)函数,如果包含,返回>0的数,否则返回0

  4. Codeforces Round #410 (Div. 2) A. Mike and palindrome【判断能否只修改一个字符使其变成回文串】

    A. Mike and palindrome time limit per test 2 seconds memory limit per test 256 megabytes input stand ...

  5. 疯子的算法总结(七) 字符串算法之 manacher 算法 O(N)解决回文串

    有点像DP的思想,写写就会做. #include<bits/stdc++.h> using namespace std; const int maxn=1e7+5; char a[maxn ...

  6. 最长(大)回文串的查找(字符串中找出最长的回文串)PHP实现

    首先还是先解释一下什么是回文串:就是从左到右或者从右到左读,都是同样的字符串.比如:上海自来水来自海上,bob等等. 那么什么又是找出最长回文串呢? 例如:字符串abcdefedcfggggggfc, ...

  7. 《LeetBook》leetcode题解(5):Longest Palindromic [M]——回文串判断

    我现在在做一个叫<leetbook>的免费开源书项目,力求提供最易懂的中文思路,目前把解题思路都同步更新到gitbook上了,需要的同学可以去看看 书的地址:https://hk029.g ...

  8. 判断一个字符串str不为空的方法

    1.str == null; 2."".equals(str); 3.str.length 4.str.isEmpty(); 注意:length是属性,一般集合类对象拥有的属性,取 ...

  9. C#算法之判断一个字符串是否是对称字符串

    记得曾经一次面试时,面试官给我电脑,让我现场写个算法,判断一个字符串是不是对称字符串.我当时用了几分钟写了一个很简单的代码. 这里说的对称字符串是指字符串的左边和右边字符顺序相反,如"abb ...

随机推荐

  1. rails笔记

    rake -T 列出全部taskconfig.active_record.schema_format = :sql #remove the old db/schema.rb file, create ...

  2. linux C socket

    socket套接字和管道同样可以提供进程内通信.但套接字更胜一筹,不同的进程可以跨越不同的主机(说白了,支持网络通信).使用套接字的知名程序:telnet.rlogin.ftp等. 你需要知道的一些基 ...

  3. spring 3 的 @value的使用

    Spring 3支持@value注解的方式获取properties文件中的配置值,大大简化了我们读取配置文件的代码.使用方式如下: 1.首先必须要配置properties文件的加载bean:在spri ...

  4. Oracle 将普通表转换为分区表

    DB:11.2.0.30 将普通表转换为区分表 一.利用原表重建分区表SQL>create table yoon ( id number primary key ,time date ); Ta ...

  5. Mysql找不到mysql.sock怎么办?

    1. #ps -aux|grep mysql 找mysql的进程. #kill mysql进程号 确定全部kill光 2.直接跳第3步,无效再使用第2步 /usr/local/mysql/bin/my ...

  6. mvvm 模式

    MVC = Massive View Controller ? 有笑话称MVC为重量级的试图控制器.仔细一想,确实存在这个问题.以UITableViewController和UITableView举个 ...

  7. HTML5七大优势“逼宫”APP

    HTML5颠覆了PC互联网的格局,优化了移动互联网的体验,接下来几年,HTML5将颠覆原生App世界. 跨平台: 在多屏年代,开发者的痛苦指数非常高,人人都期盼HTML5能扮演救星.多套代码.不同技术 ...

  8. 一些Iphone sqlite 的包装类

    相信很多人用iphone的Sqlite不会直接用C的方法,要么自己包装一层Object c的访问方法,要么用CoreData,下面我整理些目前所了结的一些Sqlite 包装类.  1.CoreData ...

  9. php5调用web service (笔者测试成功)

    转自:http://www.cnblogs.com/smallmuda/archive/2010/10/12/1848700.html 感谢作者分享 工作中需要用php调用web service接口, ...

  10. kafka中server.properties配置文件参数说明

    转自:http://blog.csdn.net/lizhitao/article/details/25667831 参数 说明(解释) broker.id =0 每一个broker在集群中的唯一表示, ...