webrtc 的回声抵消(aec、aecm)算法简介(转)
webrtc 的回声抵消(aec、aecm)算法简介webrtc 的回声抵消(aec、aecm)算法主要包括以下几个重要模块:1.回声时延估计 2.NLMS(归一化最小均方自适应算法) 3.NLP(非线性滤波) 4.CNG(舒适噪声产生),一般经典aec算法还应包括双端检测(DT)。考虑到webrtc使用的NLMS、NLP和CNG都属于经典算法范畴,故只做简略介绍,本文重点介绍webrtc的回声时延估计算法,这也是webrtc回声抵消算法区别一般算法(如视频会议中的算法)比较有特色的地方。1) 回声时延估计回声延时长短对回声抵消器的性能有比较大的影响(此处不考虑pc上的线程同步的问题),过长的滤波器抽头也无法实际应用,因此时延估计算法就显得比较重要了。常用且容易想到的估计算法是基于相关的时延估计算法(学过通信原理的应该不会陌生),另外相关算法在语音编码中也得到广泛的应用,如 amr系列,G.729系列 ,G.718等编码器。在语音信号自相关求基音周期时,由于编码器一般按帧处理,帧长度一般是10或20ms,在该时延范围内搜索基音周期运算量较小,然而对于回声抵消的应用场合,延时搜索范围比较大,带来很高的运算复杂度。在手持终端设备上,我们需要考虑移动环境的变化对算法性能的影响,比如时延是否随机变化,反射路径线性还是非线性,以及运算量(电池)是否符合要求,则更为复杂。回到webrtc的回声时延估计,它采用的是gips首席科学家Bastiaan的算法。下面介绍一下该算法的主要思想:设1表示有说话音,0表示无说话音(静音或者很弱的声音),参考端(远端)信号x(t)和接收端(近端)信号y(t)可能的组合方式有以下几种:(0,0),(0,1),(1,0),(1,1),(0,0)表示远端和近端都是比较弱的声音,(1,1)表示远端和近端都是比较强的声音,webrt的c代码默认其它两种情况是不可能发生的。设在时间间隔p上,即p=1,2,...,P, 频带q,q=1,2,...,Q上,输入信号x加窗(如汉宁窗)后的功率谱用Xw(p,q)来表示,对每个频带中的功率谱设定一个门限Xw(p,q)_threshold,如果 Xw(p,q) >= Xw(p,q)_threshold , 则Xw(p,q) =1;如果 Xw(p,q) < Xw(p,q)_threshold , 则Xw(p,q) =0;同理,对于信号y(t),加窗信号功率谱Yw(p,q)和门限Yw(p,q)_threshold,如果 Yw(p,q) >= Yw(p,q)_threshold , 则Yw(p,q) =1;如果 Yw(p,q) < Yw(p,q)_threshold , 则Yw(p,q) =0;考虑到实际处理的方便,在webrtc的c代码中,将经过fft变换后的频域功率谱分为32个子带,这样每个特定子带 Xw(p,q)的值可以用1个比特来表示,总共需要32个比特,只用一个32位数据类型就可以表示了。webrtc对参考信号定义了75个32位binary_far_history的数组存放历史远端参考信号,定义了16个32位binary_near_history的数组存放历史近端参考信号,最近的值都放在下标为0的数组中,使用binary_near_history[15]的32位bit与binary_far_history数组中75个32位bit分别按位异或,得到75个32位比特数据,32位bit的物理意义是近似地使用功率谱来统计两帧信号的相关性。统计32位结果中的1的个数存于bit_counts中,接下来用对bit_counts进行平滑防止延时突变,得到mean_bit_count,可以看出 mean_bit_count 越小,则表明近端数据与该帧的远端数据越吻合,两者的时延越接近所需要的延时数值,用value_best_candidate表示。剩下的工作是对边界数值进行保护,如果value_best_candidate接近最差延时(预设),则表明数值不可靠,这时不更新延时数据;如果数据可靠,则进一步使用一阶markvo模型,比照上一次时延数据确定本次最终的更新时延last_delay.
Bastiaan的专利本身要比现有的c代码实现更为复杂,比如在异或的时候(0,0),(0,1),(1,0),(1,1)四种组合可以附加代价函数,而c代码相当于默认给(0,0),(1,1)附加权值为1,给(0,1),(1,0)附加权值为0;
另外c代码算法是按帧顺序依次对远端和近端数组异或,实际应用时也可以每隔1帧或2帧做异或,这样可以扩大搜索范围。
总的来说webrtc的时延估计算法复杂度比求相关大大简化,尤其适用于移动终端等对运算量比较敏感的场合进行回声消除。针对实际应用场合,算法还有提升的空间。
2) NLMS(归一化最小均方自适应算法
LMS/NLMS/AP/RLS等都是经典的自适应滤波算法,此处只对webrtc中使用的NLMS算法做简略介绍。
设远端信号为x(n),近段信号为d(n),W(n),则误差信号e(n)=d(n)-w'(n)x(n) (此处‘表示转秩),NLMS对滤波器的系数更新使用变步长方法,即步长u=u0/(gamma+x'(n)*x(n));其中u0为更新步长因子,gamma是稳定因子,则滤波器系数更新方程为 W(n+1)=W(n)+u*e(n)*x(n); NLMS比传统LMS算法复杂度略高,但收敛速度明显加快。LMS/NLMS性能差于AP和RLS算法。
另外值得一提的是webrtc使用了分段块频域自适应滤波(PBFDAF)算法,这也是自适应滤波器的常用算法。
自适应滤波的更多资料可以参考simon haykin 的《自适应滤波器原理》。
3) NLP(非线性滤波)
webrtc采用了维纳滤波器。此处只给出传递函数的表达式,设估计的语音信号的功率谱为Ps(w),噪声信号的功率谱为Pn(w),则滤波器的传递函数为H(w)=Ps(w)/(Ps(w)+Pn(w))。
4)CNG(舒适噪声产生)
webrtc采用的舒适噪声生成器比较简单,首先生成在[0 ,1 ]上均匀分布的随机噪声矩阵,再用噪声的功率谱开方后去调制噪声的幅度。
总的说来,webrtc的aec算法简单、实用、易于商业化,另一方面猜测c代码还有所保留。
由于工作需要,最近一直在研究WebRTC里的AEC算法。根据源码里面的fullaec.m文件,
总体来说,我认为该AEC算法是属于分段快频域自适应滤波算法,Partioned block frequeney domain adaPtive filter(PBFDAF)。具体可以参考Paez Borrallo J M and Otero M G
使用该AEC算法要注意两点:
1)延时要小,因为算法默认滤波器长度是分为12块,每块64点,按照8000采样率,也就是12*8ms=96ms的数据,而且超过这个长度是处理不了的。
2)延时抖动要小,因为算法是默认10块也计算一次参考数据的位置(即滤波器能量最大的那一块),所以如果抖动很大的话找参考数据时不准确的,这样回声就消除不掉了。
webrtc 的回声抵消(aec、aecm)算法简介(转)的更多相关文章
- 拓展 - Webrtc 的回声抵消(aec、aecm)算法简介
webrtc 的回声抵消(aec.aecm)算法简介 原文链接:丢失.不好意思 webrtc 的回声抵消(aec.aecm)算法主要包括以下几个重要模块:1.回声时延估计 2.NLMS( ...
- webRTC中回声消除(AEC)模块编译时aec_rdft.c文件报错:
webRTC中回声消除(AEC)模块编译时aec_rdft.c文件报错. 原因是: 局部变量ip跟全局变量冲突的问题,可以将局部变量重新命名一下,就可以通过编译了. aec_rdft.c修改以后文件代 ...
- 【转帖】WebRTC回声抵消模块简要分析
webrtc 的回声抵消(aec.aecm)算法主要包括以下几个重要模块:回声时延估计:NLMS(归一化最小均方自适应算法):NLP(非线性滤波):CNG(舒适噪声产生).一般经典aec算法还应包括双 ...
- AES算法简介
AES算法简介 一. AES的结构 1.总体结构 明文分组的长度为128位即16字节,密钥长度可以为16,24或者32字节(128,192,256位).根据密钥的长度,算法被称为AES-128,AES ...
- 排列熵算法简介及c#实现
一. 排列熵算法简介: 排列熵算法(Permutation Entroy)为度量时间序列复杂性的一种方法,算法描述如下: 设一维时间序列: 采用相空间重构延迟坐标法对X中任一元素x(i)进行相空间 ...
- <算法图解>读书笔记:第1章 算法简介
阅读书籍:[美]Aditya Bhargava◎著 袁国忠◎译.人民邮电出版社.<算法图解> 第1章 算法简介 1.2 二分查找 一般而言,对于包含n个元素的列表,用二分查找最多需要\(l ...
- LARS 最小角回归算法简介
最近开始看Elements of Statistical Learning, 今天的内容是线性模型(第三章..这本书东西非常多,不知道何年何月才能读完了),主要是在看变量选择.感觉变量选择这一块领域非 ...
- AI - 机器学习常见算法简介(Common Algorithms)
机器学习常见算法简介 - 原文链接:http://usblogs.pwc.com/emerging-technology/machine-learning-methods-infographic/ 应 ...
- STL所有算法简介 (转) http://www.cnblogs.com/yuehui/archive/2012/06/19/2554300.html
STL所有算法简介 STL中的所有算法(70个) 参考自:http://www.cppblog.com/mzty/archive/2007/03/14/19819.htmlhttp://hi.baid ...
随机推荐
- ADO与ADO.NET的区别与介绍
1. ADO与ADO.NET简介ADO与ADO.NET既有相似也有区别,他们都能够编写对数据库服务器中的数据进行访问和操作的应用程序,并且易于使用.高速度.低内存支出和占用磁盘空间较少,支持用于建立基 ...
- mysql-主从复制(二)
1)主服务器上开启binlog服务器 log-bin=mysql-bin 2)用户授权(并不是privileges授权!!!!),正确有从服务器授权如下 grant replication slave ...
- Http进行网络通信
http使用get的方式进行网络通信: package com.testGet; import java.io.BufferedReader; import java.io.IOException; ...
- android 项目随记一
1. requestWindowFeature(); requestWindowFeature可以设置的值有: // 1.DEFAULT_FEATURES:系统默认状态,一般不需要指定 ...
- MAC OSX 下安装Cscope
续前文,搞定CTAGS之后,需要被搞定的是cscope,依旧是上网拖一把,具体过程如下 #1 下载cscope最新版本 http://cscope.sourceforge.net/#downloa ...
- 两天三场Java实习生面试总结
Java 关键字(如abstract)[详解] String[相关面试题] String.StringBuffer.StringBuilder区别 String中有没有使一个字符串反转的方法 线程的实 ...
- 【Leetcode】Sort List JAVA实现
Sort a linked list in O(n log n) time using constant space complexity. 1.分析 该题主要考查了链接上的合并排序算法. 2.正确代 ...
- HP-Socket
HP-Socket 是一套通用的高性能 TCP/UDP 通信框架,包含服务端组件.客户端组件和Agent组件,广泛适用于各种不同应用场景的 TCP/UDP 通信系统,提供 C/C++.C#.D ...
- java线程实践记录
框架构建过程中遇到需要用到线程的地方,虽然以前经常听到线程,也看过一些线程类的文章,但真正使用时还是遇到一些问题,此篇正式为了记录自己对线程实操的体会. 入口类代码: public class tes ...
- 使用curl操作openstack swift
openstack官网有专门的开发者文档介绍如何使用curl操作swift(http://docs.openstack.org/api/openstack-object-storage/1.0/con ...