博弈论---Nimk问题。 dp再搞搞。

很容易看出,该游戏的终态是每两个棋子都紧靠着。当一颗棋子移动,另一方与该棋子对应的那一刻可以立即追上,使得仍旧紧靠,最终棋子动弹不得,游戏结束。

还能看出,对于白色棋子(先手),往左走没有意义。因为黑子(后手)可以紧随其上使得两者距离不变。同理黑子只往左走。(黄学长貌似提出了反例?)

所以,问题可以抽象为Nim,与传统Nim只能选1堆不同,你可以选1-d堆。

这个拓展问题叫做Nimk问题。对于这种问题,我们可以证明:当将n堆棋子化为二进制,每一位上如果1的个数mod(k+1)==0 则为必败态。

详细证明,大传送术!http://blog.csdn.net/weixinding/article/details/7321139

最后只需要计算方案数。使用dp,dp[i][j]表示当前在二进制第i位上,总计用了j石头的方案。转移方程为:

dp[i+1][j+a*(k+1)*bin[i]]+=dp[i][j]*C(n,a*(k+1));

注意组合数处理,取%等细节即可。

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define mo 1000000007
4 #define N 10005
5 #define LL long long
6 LL c[N][205],dp[20][N],ans;
7 int n,k,d,K,bin[20];
8 void pre(){
9 bin[0]=1; for(int i=1;i<=15;i++) bin[i]=bin[i-1]<<1;
10 for(int i=0;i<=n;i++) c[i][0]=1;
11 for(int i=1;i<=n;i++)
12 for(int j=1;j<=min(i,K);j++)
13 c[i][j]=(c[i-1][j]+c[i-1][j-1])%mo;
14 }
15 LL C(int n,int m){
16 if(n-m<m) m=n-m;
17 return c[n][m];
18 }
19 LL cal(LL& x,LL y){
20 x=(x+y)%mo;
21 }
22 int main(){
23 scanf("%d%d%d",&n,&K,&d); pre(); dp[0][0]=1;
24 for(int i=0;i<15;i++)
25 for(int j=0;j<=n-K;j++)
26 for(int k=0;k*(d+1)<=K/2 && j+k*(d+1)*bin[i]<=n-K;k++)
27 cal(dp[i+1][j+k*(d+1)*bin[i]],dp[i][j]*C(K/2,k*(d+1)));
28 for(int i=0;i<=n-K;i++)
29 cal(ans,dp[15][i]*C(n-i-K/2,K/2));
30 LL tot=C(n,K);
31 cout<<(tot-ans+mo)%mo;
32 return 0;
33 }

【bzoj2281】[Sdoi2011]黑白棋的更多相关文章

  1. [BZOJ2281][SDOI2011]黑白棋(K-Nim博弈)

    2281: [Sdoi2011]黑白棋 Time Limit: 3 Sec  Memory Limit: 512 MBSubmit: 626  Solved: 390[Submit][Status][ ...

  2. BZOJ2281[Sdoi2011]黑白棋&BZOJ4550小奇的博弈——DP+nimk游戏

    题目描述 小A和小B又想到了一个新的游戏. 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色. 最左边是白色棋子,最右边是黑色棋子,相邻的棋子颜色不同. 小A可以移动白色 ...

  3. bzoj2281 [Sdoi2011]黑白棋

    一眼$nimk$游戏,后来觉得不对劲,看了黄学长博客发现真的不是$nimk$. 就当是$nimk$做吧,那么我们要保证每一位上一的个数都是$d+1$的倍数. $dp$:$f[i][j]$表示从低到高第 ...

  4. BZOJ2281:[SDOI2011]黑白棋(博弈论,组合数学,DP)

    Description 小A和小B又想到了一个新的游戏. 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色. 最左边是白色棋子,最右边是黑色棋子,相邻的棋子颜色不同. 小 ...

  5. BZOJ2281 [SDOI2011]黑白棋 【dp + 组合数】

    题目 小A和小B又想到了一个新的游戏. 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色. 最左边是白色棋子,最右边是黑色棋子,相邻的棋子颜色不同. 小A可以移动白色棋子 ...

  6. 【BZOJ2281】[SDOI2011]黑白棋(博弈论,动态规划)

    [BZOJ2281][SDOI2011]黑白棋(博弈论,动态规划) 题面 BZOJ 洛谷 题解 先看懂这题目在干什么. 首先BZOJ上面的题面没有图,换到洛谷看题就有图了. 不难发现都相邻的两个异色棋 ...

  7. Bzoj 2281 [Sdoi2011]黑白棋 题解

    2281: [Sdoi2011]黑白棋 Time Limit: 3 Sec  Memory Limit: 512 MBSubmit: 592  Solved: 362[Submit][Status][ ...

  8. P2490 [SDOI2011]黑白棋

    P2490 [SDOI2011]黑白棋 题意 一个 \(1*n\) 的棋盘上,A 可以移动白色棋子,B 可以移动黑色的棋子,其中白色不能往左,黑色不能往右.他们每次操作可以移动 1 到 \(d\) 个 ...

  9. 【BZOJ2281】【博弈论+DP】 [Sdoi2011]黑白棋

    Description 黑白棋(game) [问题描述] 小A和小B又想到了一个新的游戏. 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色. 最左边是白色棋子,最右边是 ...

  10. bzoj 2281 [Sdoi2011]黑白棋(博弈+组合计数)

    黑白棋(game) [问题描述] 小A和小B又想到了一个新的游戏. 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色. 最左边是白色棋子,最右边是黑色棋子,相邻的棋子颜色 ...

随机推荐

  1. java实现excel与mysql的导入导出

    注意:编码前先导入poi相关jar包 1 /** * 读excel 到list * * @param file excel file * @param fields 字段数组 * @return * ...

  2. DDL之操作表

    DDL之操作表 DDL是数据定义语言,用来定义数据库对象:数据库.表.列等.其中定义数据库我们已经在DDL之操作数据库中详细讲解了,今天我们来学习使用DDL操作表. 1.创建表 使用数据定义语言创建表 ...

  3. apt系统中sources.list文件的解析

    /etc/apt/sources.list 一般源信息都存在这个文件中.但众多软件源都放在一个文件中实在有点乱,于是新版ubuntu也有了分类的方法: 文件夹  /etc/apt/sources.li ...

  4. Java Date,long,String 日期转换

    1.java.util.Date类型转换成long类型java.util.Date dt = new Date();System.out.println(dt.toString()); //java. ...

  5. iframe页面调用父窗口JS函数

    A页面iframe 页面B, 此时 如果要在B页面调用父页面A的函数 B页面写法 parent.functionName(); 错误1: 解决办法 var js_domain_async = 'bai ...

  6. python 脚本传递参数

    python查找指定字符 #!/usr/bin/env python import sys import re f = open("log.txt", "rb" ...

  7. js封装,一个JS文件引用多个JS文件

    (function() { //加载   varobj =  {};   /**    * 动态加载脚本函数    * @param url 要加载的脚本路径    * @param callback ...

  8. 再说TCP神奇的40ms

    版权声明:本文由安斌原创文章,转载请注明出处: 文章原文链接:https://www.qcloud.com/community/article/186 来源:腾云阁 https://www.qclou ...

  9. 如何设计一个RPC系统

    版权声明:本文由韩伟原创文章,转载请注明出处: 文章原文链接:https://www.qcloud.com/community/article/162 来源:腾云阁 https://www.qclou ...

  10. HTML5游戏实战(4): 20行代码实现FlappyBird

    这个系列很久没有更新了.几个月前有位读者调侃说,能不能一行代码做一个游戏呢.呵呵,接下来一段时间,我天天都在想这个问题,怎么能让GameBuilder+CanTK进一步简化游戏的开发呢.经过几个月的努 ...